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ABSTRACT 

 

Water scarcity is a problem that will be exacerbated by climate change. Being able to 

model the effect of climate change on water scarcity is important to effectively plan the use of 

future water resources. This research integrated the Soil and Water Assessment Tool (SWAT), 

climate model, and water footprint analysis to measure the impact of climate change on future 

water scarcity. This was achieved through two objectives.  The first objective was to create a 

modeling framework that links the output from climate model to SWAT and combined 

streamflow outputs from SWAT with water footprint analysis to measure how climate change 

will impact water scarcity of a river basin.  This was accomplished through creating a SWAT 

model within ArcMap and inputting a topographic, soil, land use, and weather data.  Climate 

Forecast System Reanalysis (CFSR) data were used in lieu of observed weather data due to a 

lack of available data.  SWAT-CUP (Calibration and Uncertainty Program) was used to calibrate 

two upstream streamflow gauges, then calibrate and validate a third streamflow gauge at the 

outlet of the Senqu basin in Lesotho. The two upstream streamflow gauges were calibrated from 

1986 to 2002. The downstream streamflow gauge was calibrated from 1985 to 2002 and 

validated from 2003 to 2013. Three Regional Climate Models (RCM), ICHEC-EC-EARTH, 

MIROC-MIROC5, and CCCma-CanESM2 were downloaded from the Coordinated Regional 

Downscaling Experiment (CORDEX) dataset.  Each RCM was downloaded with two different 

Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathways 

(RCP), RCP 4.5 and RCP 8.5.  The RCMs were bias corrected using a cumulative distribution 

function mapping technique.   
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These RCMs as well as an average of the RCMs were used as input for the SWAT model 

to generate future streamflow outputs.  The streamflow outputs provide the future blue water 

availability of the Senqu River. The results showed an overall decrease in streamflow in both 

RCPs. The second objective was to apply the framework to Lesotho and use the information 

from the ArcSWAT model and data from the Blue Water Footprint analysis to measure the 

future potential Blue Water Scarcity of Lesotho.  This was accomplished through the Blue Water 

Footprint of Lesotho generated from the 5th National Blue Footprint analysis.  The annual blue 

water scarcity was calculated as the ratio of the Blue Water Available to Blue Water Footprint.  

Three approaches were adopted to analyze the water scarcity of Lesotho.  The first approach 

used the national Blue Water Footprint in the water scarcity calculation to investigate the worst-

case scenario.  The second approach used the modified blue water footprint based on the 

population living within the Senqu river basin.  The third approach used a modified blue water 

footprint that accounted for the projected population growth of Lesotho.  The results of scenario 

1 showed there was moderate water scarcity in a period of four years in climate scenario of 

RCP8.5. The results of scenario 3 showed there were multiple cases of water scarcity in both 

RCP 4.5 and RCP 8.5 with two years of severe water scarcity.  This research is limited by data 

availability and the results for Lesotho could be improved by accurate dam data and the fine 

scale water footprint analysis. The modeling framework integrating climate model, hydrology, 

and water footprint analysis, however, can be applied to other remote places where limited data 

are available.    
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CHAPTER 1: INTRODUCTION 

 

1.1 Climate Change and Water Scarcity 

 The climate of the world has been changing.  Over the past 50 years there has been an 

observed decrease in the frequency of cold days, cold nights, and frost and an observed increase 

in hot days and hot nights (Pachauri et al., 2014).  Anthropogenic climate change is the change in 

climate due to emission of greenhouse gases associated with human activity.  Since the industrial 

revolution human contribution to the amount of Carbon Dioxide (CO2) in the atmosphere has 

grown with an increase of 70% between 1970 and 2004 (Pachauri et al., 2014).  Previous studies 

have shown that climate change affects hydrological cycles and the amount of streamflow 

(Arnell, 2003, Arnell, 2004, Vorosmarty, 2000, Fry et al., 2012).  Mountainous regions are 

especially susceptible to the effects of climate change (Parish and Funnell, 1999).  Any change in 

the climate in a mountain range can have cascading effects on the lowlands.  Many mountains 

throughout the world are the source for lowland river networks as well as function as long term 

water storage in the form of snow.  Small amount of changes around the freezing temperature 

threshold will vary the amount of streamflow and peak discharge (Diaz et al., 2003). 

As climate change affects various ecosystems, the amount of freshwater available for the 

world will be impacted and more people are likely to be vulnerable to water scarcity and its 

consecutive effects. Climate change is predicted to exacerbate water scarcity (Schewe et al., 

2014). One recent example is the city of Cape Town, South Africa.  Cape Town has been 

suffering through a two year drought that started in 2015 and was expected to run out of water in 

April 2018 (Onishi and Sengupta, 2018).  Nearly 80% of the world’s population is exposed to a 
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high risk of water scarcity (Vorosmarty et al., 2010). And the global water demand is expected to 

increase by approximately 55% by 2050 (Oecd, 2012).  Access to adequate water supply and 

proper sanitation methods are essential to mitigating disease throughout the world (Prüss‐Ustün 

et al., 2014).  It is estimated that by 2025 about 1.8 billion people will face absolute water 

scarcity (Wwdr, 2016).    

The ability and tools used to measure water scarcity have evolved over the years.  There 

are five main approaches developed to measure water scarcity.  These are:  

1) The Water Stress Index (Falkenmark et al., 1989, Gleick, 1996, Ohlsson, 2000) which 

evaluates water scarcity on a per capita availability. 

2) The Criticality Ratio (Alcamo et al., 2000, Chaves and Alipaz, 2007, Mcnulty et al., 

2010, Raskin et al., 1997) which measures water scarcity as a ratio of the Annual 

Withdrawal to the Available Water Resources.  

3) The Water Poverty Index (Asheesh, 2003, Smakhtin et al., 2005, Sullivan, 2002) 

which uses environmental and social metrics, such as ecosystem productivity, 

community, human health, and economic welfare, to measure whether individuals are 

water secure at the household and community level. 

4) The International Water Management Institute (IWMI) indicator (Seckler et al., 1999) 

evaluates water scarcity by taking the ratio of the freshwater available for human 

requirements to the main water supply. 

5) The Water Footprint Analysis (Hoekstra et al., 2011) which evaluates water scarcity 

using the water footprint of a country rather than the water withdrawal.  The water 

footprint of a country is the amount of water appropriated for consumption, industry, 

and agriculture.  
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Blue water is defined as freshwater either in streams or groundwater.  It is used to grow 

food, manufacture goods in industries, and sustain population in urban and rural settings.  As 

population increases the demands for food, water, and material goods will increase (Postal, 

2000).  Along with population growth, climate change is a factor that may affect blue water 

availability.  Using the water footprint instead of water withdrawal allows for a more accurate 

measurement as a significant portion of the water that is withdrawn is returned to the 

environment.  The use of blue water for agriculture, industry, and domestic is accounted for in a 

blue water footprint analysis.  A total of five global water footprint analyses have been 

conducted (Fader et al., 2011, Hoekstra and Chapagain, 2007, Hoekstra and Hung, 2005, 

Hoekstra and Mekonnen, 2012, Wang and Zimmerman, 2016).  The most recent global water 

footprint analysis was conducted by Wang and Zimmerman (Wang and Zimmerman, 2016).  

The Water Footprint accounting methodology has been incorporated with SWAT to 

assess water scarcity (Rodrigues et al., 2014).  SWAT (Soil and Water Assessment Tool) is a 

semi-distributed hydrological model developed by the United States Department of Agriculture 

used for long term simulations of a variety of hydrological and related physical-chemical 

processes (Arnold et al., 1998).  The framework introduced by Rodrigues et al. (2014) uses the 

SWAT output of soil moisture, evapotranspiration, and streamflow to calculate green and blue 

water scarcity, while blue water is freshwater, green water is water from precipitation that is 

absorbed by soil and used by plants (Figure 1).   
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Figure 1: Model framework used by Rodrigues et al. (2014) to calculate blue and green water 

scarcity.  

This study expanded the framework developed by Rodrigues et al. (2014) to include 

climate change scenarios.  Specifically, a model framework was created that integrates climate 

change with water availability analysis using ArcSWAT and combines with water footprint 

analysis to measure blue water scarcity.  SWAT has been used to evaluate the impact of climate 

change on blue and green water resources (blue water streamflow, seasonal average change in 

green water storage and green water flow) of the Athabasca River Basin in Canada (Shrestha et 

al., 2017).  Shrestha et al. (2017), however, did not include the water footprint analysis to assess 

water scarcity.  
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1.2 Water Scarcity in Lesotho 

The framework created in this study was applied to the Senqu River Basin within Lesotho 

as a case study. SWAT has been used in many hydrological studies with respect to climate 

change (Cousino et al., 2015, Kang et al., 2015, Le and Sharif, 2015, Li et al., 2016, Mittal et al., 

2015, Parajuli et al., 2016); however, limited studies have been conducted in the continent of 

Africa. 

A search in the SWAT database (https://www.card.iastate.edu/swat_articles/) for SWAT 

models related to Africa resulted in 81 articles.  One of the articles, Maliehe and Mulungu 

(2017), conducted a SWAT study of the water demands of the South Phuthiatsana catchment 

within Lesotho.  Of the 81 articles, only 9 included climate change studies, however none of the 

climate change studies related specifically to South Africa.  One of the nine studies did conduct a 

climate change study for the entire Africa including Lesotho but did not specifically focus on it.  

Of the 81 articles, only 15 related to South Africa, and none was conducted specifically for 

Lesotho or the Senqu River Basin with consideration of climate change.  The study that included 

Lesotho in a climate change study evaluating the blue water availability for the entire continent 

of Africa was conducted by Faramarzi et. al (2013).  While the blue water availability is 

calculated, water scarcity is not evaluated in the study. 

 Lesotho is a land locked country inside of South Africa with a surface area of 30,355 

square kilometers.  It ranges from 1400 to 3400 meters in altitude above sea level.  Lesotho has 

the highest low point of any country in the world at 1400 meters above sea level and is the only 

country in the world that lies entirely above 1000 meters.  Water is one of the main exports of 

Lesotho (London, 2017), mostly from the Senqu river.   
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The Senqu river originates in the Lesotho highlands and flows westward 2200 km to the 

west coast where it is discharges into the Atlantic Ocean. The Senqu River basin as shown in 

Figure 2, has a total catchment area of approximately 1 million square kilometers (Heath and 

Brown, 2007).   

 

Figure 2: Map of Lesotho with the Senqu River Basin in red. 

  Water withdrawal within Lesotho is broken up into three main sectors: agriculture, 

industry, and urban and household use (Cridf, 2017).  Industry, urban and household use each 

make up 46% of water withdrawal individually, while agriculture makes up 8%.  This is 

represented graphically in Figure 3.  
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Figure 3: Water withdrawal percentage between agriculture, industry, and urban and household 

use within Lesotho. 

The average household within Lesotho uses between 1000 and 2500 liters/month (Bello 

et al., 2010) and has an average of 5 members (Ministry of Health [Lesotho], 2014). Within the 

sector of urban households, 97% of them have access to an improved source of drinking water 

while only 49% have access to improved sanitation (Ministry of Health [Lesotho], 2014).  In 

rural households, 77% of households have access to an improved source of drinking water and 

52% have access to improved sanitation (Ministry of Health [Lesotho], 2014).  Research 

containing information on specific household water allocation could not be found.  However, the 

household water allocation observed as a Peace Corps Volunteer within Lesotho for 2 years  is 

similar to a study conducted by Thompson et al. (2001), which evaluated the change in 

household water use in the three east African countries of Kenya, Tanzania, and Uganda. Figure 

4 presents a graphical representation of typical household use in Lesotho using the research of 

Thompson et al. (2001) as a guideline. 

8%

46%

46%

Agriculture Industry Urban and Household Use
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Figure 4: Estimated amount of water used daily in a typical rural household in Lesotho based 

upon research by (Thompson et al., 2001) and the author’s own experience.  Washing includes 

washing dishes, clothes, and cleaning the house. 

It was estimated that a majority of daily household water use is allocated to bathing and 

washing; 25 liters and 23 liters respectively.  Washing refers to washing dishes, clothes, and 

cleaning the house.  Basotho (the people of Lesotho) typically have gardens where vegetables are 

grown, and as such have 5 liters allocated daily.  Eight liters are allocated to drinking and 

cooking and 10 liters for livestock care.   

In Lesotho the Senqu River is used by Basotho for grazing animals, growing crops, 

catching fish and harvesting reeds, thatching grass, growing grass for handicrafts, wild 

vegetables, trees, medicinal plants and sand (Heath and Brown, 2007).  Changes to water 

available from this river has the potential to impact the livelihood of many Basotho who reside 

along it.  A major stressor on water availability from the Senqu River Basin is the Lesotho 

Highlands Water Project (LHWP).   

  

10

5

25

23

8

Livestock Garden Bathing Washing Drinking and Cooking
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Two dams, the Katse and Mohale, divert water from the Senqu River basin and send it to 

the Vaal River basin in the Gauteng Province in South Africa (Lhwp, 2008).  This lowers the 

amount of water available to the Basotho downstream.  The LHWP plans to implement three 

more dams along the Senqu river. 

 Lesotho’s high elevation mountainous areas are projected to be more sensitive to climate 

change (IPCC, 2007).  Lesotho is also vulnerable to climate change due to its reliance on rain-fed 

subsistence agriculture, on water resource exports and on hydroelectricity (Mdg, 2013).  The 

2013 Lesotho Millennium Development Goals status report predicted shorter growing seasons 

and an increase in extreme weather events (Mdg, 2013).  Lesotho has experienced extreme 

weather events in current history, for example, a drought in 2015 and 2016 which crippled many 

parts of the country. 

 Between 75% and 80% of Lesotho’s rural population relies on agriculture for their 

livelihood (Mdg, 2013).  Any significant change in the amount of blue water available for 

agriculture could greatly affect the livelihood of many Basotho as well as have negative impacts 

on their hygiene and sanitation (Fry et al., 2008). 
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1.3 Motivation and Objectives 

While many SWAT studies exist that evaluate climate change or evaluate water scarcity, 

there are no studies that could be found that utilize the streamflow outputs of SWAT to measure 

water scarcity with respect to climate change.  There are also no studies found that evaluate the 

effects of climate change on the Senqu River basin within Lesotho.  Therefore, the objectives of 

this study were: 1) To create a modeling framework that uses ArcSWAT streamflow outputs 

combined with water footprint analysis to measure how climate change will impact water 

scarcity of a river basin. 2) To apply the framework on the Senqu River basin within Lesotho to 

provide the insights of water scarcity in the region. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 History of Measuring Water Scarcity  

Measuring water scarcity has evolved over the past few decades.  Water Scarcity was 

first measured on a per capita basis. Falkenmark, Gleik developed a Water Scarcity Index that 

assumes everyone uses 1000 m3 per day (Falkenmark et al., 1989, Gleick, 1996).  This became a 

benchmark water scarcity indicator that has been accepted by the World Bank (Brown, 2011).  

Ohlsson created the Social Water Stress Index by taking the Water Scarcity Index and dividing it 

by the United Nations Development Program Human Development Index providing an insight 

into how economic, technological, or other means affect overall fresh water availability in a 

region (Ohlsson, 2000).  The focus then changed from looking at water scarcity per capita to a 

national scale. The Water Resource Vulnerability Index (Chaves and Alipaz, 2007, Mcnulty et 

al., 2010, Raskin et al., 1997, Vorosmarty et al., 2005) calculated water scarcity by looking at 

water consumption at a national scale.  The criticality ratio is commonly used in water resource 

analysis and is defined as the ratio of water withdrawals for human use to total renewable water 

resources (Alcamo et al., 2000).   As population continued to increase a link between water 

availability and projected population growth was created (Asheesh, 2003). The need to continue 

to link social and economic variable to water scarcity led to the creation of the Water Poverty 

Index.  

The Water Poverty Index is a comprehensive tool that incorporated social metrics 

including ecosystem productivity, community, human health, and economic welfare into 
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measuring water scarcity (Sullivan, 2002).  Unfortunately, it is complex and lacks a 

standardization on how each metric is weighted.   

(Pfister et al., 2009) combined the Water Scarcity Index with Life Cycle Impact 

Assessment to evaluate water stress of an area based on energy used in backup technology, the 

fraction of freshwater consumption that contributes to depletion, as well at the total water 

withdrawal from the watershed. Hoekstra (2003) established a method to measure water stress 

using water footprints.  This method is explained more in the following sections.  Rijsberman 

(2006) and Brown (2011) have discussed in length the different water scarcity indices that have 

been developed. Table 1 provides an overview of the different Water Scarcity Indices that have 

been developed.  

2.2 Water Footprint Analysis 

Hoekstra et al. (2011)argues that using the water footprint helps to correct common errors 

made in other indices.  Other indices (Chaves and Alipaz, 2007, Raskin et al., 1997, Vorosmarty 

et al., 2005) use water withdrawal as an indicator of water use.  The Water Footprint differs from 

Water Withdrawal in that: 1) It does not include blue water use insofar as this water is returned 

to where it came from, 2) It is not restricted to blue water use, but also includes green and grey 

water, and 3) It is not restricted to direct water use, but also includes indirect water use(Hoekstra 

et al., 2011).  Blue water is defined as water that is sourced from surface or groundwater and is 

used in domestic, industry, or agricultural.  Green water is water from precipitation stored in soil 

and is evaporated, transpired, or used by plants.  Gray water is water used to create pollutants.   
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The three most common errors among other indices are:   

1) Water withdrawal does not include the water that is returned from the catchment after 

use. Thus, using this as an indicator at the scale of the catchment is not a good 

method.  A better indicator of blue water consumption is the blue water footprint. 

2) Total available water is not a good metric to use to define water availability as it 

ignores the portion needed to maintain the environment. Thus, the demand required 

by the environment should be subtracted from the total water available. 

3) Evaluation of water scarcity on an annual usage and availability does not paint an 

accurate picture of variations during the year.  Monthly values would be more 

accurate. (Hoekstra et al., 2011) 

A total of five global water footprint studies have been published to date (Fader et al., 

2011, Hoekstra and Chapagain, 2007, Hoekstra and Hung, 2005, Hoekstra and Mekonnen, 2012, 

Wang and Zimmerman, 2016).  The most recent water footprint study conducted by Wang and 

Zimmerman improves on previous water footprint studies by using a hybrid water footprint 

accounting model with better spatial and sectoral resolution (Wang and Zimmerman, 2016).  

Wang and Zimmerman report Water Footprints on a national scale.   

The Water Footprint of a nation can be calculated through two approaches known as the 

top-down (input-output) approach and the bottom-up (process-based) approach.  In the top-down 

approach the water footprint of national consumption is shown in equation 1.  

𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡 = 𝑊𝐹𝑎𝑟𝑒𝑎,𝑛𝑎𝑡 + 𝑉𝑖 − 𝑉𝑒 (1) 
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In equation 1,  𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡 is the water footprint of national consumption measured in 

m3/year,  𝑊𝐹𝑎𝑟𝑒𝑎,𝑛𝑎𝑡 is the water footprint within the nation (m3/year), 𝑉𝑖is the virtual-water 

import (m3/year), and  𝑉𝑒 (m3/year) is the virtual-water export. Virtual water is defined as the 

embedded water within a product.   

The bottom-up approach is based on calculating the water footprint of a group of 

consumers where the consumers consist of the inhabitants of a nation and is defined within 

equation 2.  

𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡 = 𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡,𝑑𝑖𝑟 + 𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡,𝑖𝑛𝑑𝑖𝑟  (2) 

In equation 2, 𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡,𝑑𝑖𝑟 is the direct water footprint used by the consumer measured 

in m3/year.  𝑊𝐹𝑐𝑜𝑛𝑠,𝑛𝑎𝑡,𝑖𝑛𝑑𝑖𝑟 is the indirect water footprint (m3/year) and refers to the water 

consumption and pollution of water that can be associated with the production of the goods and 

services used by the consumer. 

More detail on the calculation of the Water Footprint using both of these methods can be 

found in the Water Footprint Assessment Manual (Hoekstra et al., 2011).  The main difference 

between the two methods is the different use of input data.  The bottom up approach depends on 

the quality of national consumption data while the top down approach relies on the quality of 

trade data (Hoekstra et al., 2011).
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Author Index Name Equation Indicators 

Falkenmark et al. (1989) 
Water Stress Index/Water 

Scarcity Index 

WSI=WA/P WSI=Water Stress 

Index (m^3/capita/year); WA=Water 

Availability; P=Population 

No Stress: WSI>1700; 

Water Stress: 

WSI=1000-1700;  

Gleick (1996); 

Falkenmark and 

Widstrand (1992) 

Basic Human Water 

Requirements 

WSI=WA/P WSI=Water Stress 

Index (m3/capita/year); WA=Water 

Availability; P=Population 

  

Ohlsson (2000) Social Water Stress Index 

SWSI=WSI/HDI; SWSI (Social 

Resource Water Stress Index); 

WSI=Water Stress Index; 

HDI=Human Development Index 

Relative Sufficiency: 

SWSI=0-5; Stress: 

SWSI=6-10; Scarcity: 

SWSI=11-20; Beyond 

the Barrier: SWSI>20 

Raskin et al. (1997) 

Water Rescource 

Vulnerability Index (WTA 

Ratio) 

WTA=W/WA; WTA=Water 

Resource Vulnerability Index; 

W=Annual Withdrawal; 

WA=Available Water Resources 

No Water Stress: 

WTA=0-10%; Low 

Water Stress: 

 WTA=10%-20%; Mid 

Water Stress:  

WTA=20%-40%; High 

Water Stress: 

WTA=40%-80%;  

Vorosmarty (2000) 
Local Relative Water Use 

and Reuse Index  

(D+I+A )/Qc ; D=Domestic Water 

Withdrawal; I=Industrial Water 

Withdrawal; A=Agricultural Water 

Withdrawal; Qc=Sum of all local 

discharges 

  

Chaves and Alipaz 

(2007) 

Watershed Sustainability 

Index (WSI) 

WSI=(H+E+L+P)/4   H=Hydrology; 

E=Environment; L=Life; P=Policy; 

Poor: WSI=0-.25; 

Medium: WSI=.25-.5; 

Good: WSI=.5-.75; 

Excellent: WSI=1 

Mcnulty et al. (2010) 
Water Supply Stress Index 

(WaSSI) 

WaSSIx=WDx/WSx; WD=Water 

Demand; WS=Water Supply; x=historic 

or future water supply and/or demand 

from environmental and anthropogenic 

sectors 

  

    

WSI>1 Overexploited 

Table 1: Summary of common water scarcity indices. 
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Author Index Name Equation Indicators 

Sullivan (2002) 
Water Poverty 

Index 

WPI=sum(wi *xi)/sum(wi)                                                      

WPI: water poverty index value 

xi: component i of the WPI structure (assessment as %) 

wi: weight applied to the component i. 

The lowest possible level 

of water poverty: WPI = 

100 

Level of water poverty: 0 

< WPI < 100 the highest 

possible level 

of water poverty: WPI = 

0 

Smakhtin et al. 

(2005) 

Water Stress 

Indicator (WSI) 

WSI=Withdrawals/(MAR-EWR);   MAR=Mean Annual 

Runoff; EWR=Environmental Water Requirements 

WSI>1 Overexploited 

(Current water use 

tapping into EWR); 

.6<=WSI<1 Heavily 

exploited.  

Seckler et al. 

(1999) 

IWMI 

(International 

Water 

Management 

Institute) 

WS = PWS/UWS 

UWS: utilizable water supply 

PWS: primary water supply 

Physical water scarcity: 

WS ≥ 60% (the region 

will not be able to meet 

water demand in future) 

to people)  

Hoekstra (2003) 

Blue Water 

Footprint 

Analysis 

BWS=BWF/(BWA-EWN); BWS=Blue Water Scarcity; 

BWF=Blue Water Footprint; BWA=Blue Water Available; 

EWN=Environmental Water Needs; 

low blue water scarcity 

(<100%):  

moderate blue water 

scarcity (100–150%):  

significant blue water 

scarcity (150–200%):  

severe water scarcity 

(>200%).  

    

    

    

Table 1: Continued. 
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2.3 Soil and Water Assessment Tool 

SWAT is a semi-distributed hydrological model developed by the United States 

Department of Agriculture used for long term simulations of a variety of processes (Arnold et al., 

1998).  SWAT operates on a daily time step and is composed of eight major model components 

including: weather, hydrology, soil temperature and properties, plant growth, nutrients, 

pesticides, bacteria and pathogens, and land management (Arnold et al., 2012).  ArcSWAT is a 

geographic information system (GIS) interface for SWAT.   

SWAT has been used for a myriad of watershed , land use management, water quality, 

and climate change studies (Cousino et al., 2015, Hayhoe, July 2007, Li et al., 2016, Parajuli et 

al., 2016, Park et al., 2011, Pierce et al., 2009, Prasad et al., Elhassan et al., 2015, Geza and 

Mccray, 2008, Lam et al., 2010, Ullrich and Volk, 2009, Arias et al., 2014, Arias et al., 2012).   

There are many SWAT studies that focus on climate change, water scarcity, and water 

footprints, but there are not any that could be found that use SWAT outputs to measure the 

effects of climate change on water scarcity using the water footprint analysis.  A search through 

the SWAT database (https://www.card.iastate.edu/swat_articles/) for relevant literature was 

conducted and the results are provided in Table 2. 

Table 2: Soil and Water Assessment Tool database search of articles containing water scarcity, 

water footprint, and climate change studies. 
 

Number of Articles Search Term Application Category 

13 water footprint 

 53 water scarcity 

 7 water scarcity climate change 

0 water footprint climate change 
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Table 2 demonstrates that while there are a number of articles that focus on water 

scarcity, there are only 7 that evaluate both water scarcity and climate change.  Notable articles 

that appeared in the search result that relate to just water scarcity include Rodrigues et al. (2014) 

which created a modeling framework for measuring water scarcity using the water footprint 

concepts, but did not include a climate change analysis.  Schuol et al. (2008) modeled the blue 

and green water availability of Africa and measured water scarcity using the Water Stress Index.  

From the 7 articles measuring both water scarcity and climate change impact only Abu-Allaban 

et al. (2015) and Shrestha et al. (2017) measure the water scarcity impact of climate change on a 

river basin.  However, they do not evaluate water scarcity using the water footprint, but evaluate 

the relative change in streamflow.  Faramarzi et al. (2013) modeled the impact of climate change 

of blue and green water availability of Africa and evaluated the relative change in total water 

yield of the continent.   

The search of the SWAT database relating to the Senqu basin within Lesotho returns 

even less studies.  Only one SWAT study has been conducted within Lesotho.  Maliehe and 

Mulungu (2017) evaluate the water demand of the South Phuthiatsana river basin.  There have 

been no SWAT studies relating to climate change conducted within Lesotho.  Faramarzi et al. 

(2013) included Lesotho in the assessment of climate change impacts on the blue and green 

water availability in Africa but did not measure water scarcity of Lesotho.  Figure 5 shows the 

total number of articles within the SWAT database of a particular topic. The ‘X’ denoted in 

Figure 5 is the gap in knowledge this paper fills, by combining SWAT with the water footprint 

analysis to measure the impact of climate change on water scarcity in Lesotho. 
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Figure 5: Review of articles within the SWAT database. The total number of articles for a topic 

is listed.  'X' is the gap in knowledge this paper fills, by combining SWAT with the water 

footprint analysis to measure the impact of climate change on water scarcity in Lesotho. 
 

SWAT divides a watershed into sub-basins or sub-watersheds and then further divides 

these sub-basins into hydrologic response units (HRUs).  A sub-basin possesses a geographic 

position in the watershed and is spatially related to other sub-basins.  HRUs are portions of a 

sub-basin that possess unique land use/management/soil attributes.  Input data including 

topography, weather, land use, and soil properties, are used to calculate the runoff, sediment and 

nutrient loadings from each HRU and then summed together to determine the total loadings from 

the sub-basin (Arnold et al., 2012, Arnold et al., 2002).  

The main inputs needed to perform a SWAT hydrological analysis are a digital elevation 

model (DEM), daily weather data, soil map, and land use map.  Input weather data includes 

min/max temperatures, precipitation, solar radiation, wind speed, and relative humidity on a 

daily time step (Arnold et al., 2002).  
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SWAT outputs variables on three levels titled the HRU output file, the sub-basin output 

file, and the main channel or reach output file.  A summary output file is also created.  These 

files contain a number of outputs including: flow in cubic meters per second (cms) and flow out 

(cms) of sub-basins, evapotranspiration (cms), sediment concentration in and out (mg/kg) of sub-

basins, organic Nitrogen and Phosphorus loads (kg). For a full list of outputs see the SWAT 

input output manual (Arnold et al., 2002). The SWAT output used in this study will be the 

FLOW_OUT variable measured in cms. 

Water balance is the driving force behind all of the processes in SWAT.  The hydrologic 

cycle simulated by SWAT is based on the water balance equation: 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡

𝑖=1
 (3) 

In equation 3, 𝑆𝑊𝑡 is the final water content (mm H2O), 𝑆𝑊0 is the initial soil water 

content on day i (mm H2O), t is the time (days),  𝑅𝑑𝑎𝑦 is the amount of precipitation on day i 

(mm H2O), 𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff on day i (mm H2O), 𝐸𝑎 is the amount of 

evapotranspiration on day i (mm H2O), 𝑤𝑠𝑒𝑒𝑝 is the amount of water entering the vadose zone 

from the soil profile on day i (mm H2O), and 𝑄𝑔𝑤 is the amount of ground water return flow on 

day i (mm H2O).  Detailed information regarding the calculation of each of the variables can be 

found in (Neitsch et al., 2011). 

A SWAT model can be calibrated in a number of ways.  However, the first step in 

calibration for any model includes a determination of the most sensitive parameters in the SWAT 

model through the use of a sensitivity analysis.  A sensitivity analysis is the process of 

determining rate of change in model output with respect to changes in model input (parameters) 

(Arnold et al., 2012).   
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There are generally two types of sensitivity analysis that are performed, local and global.  

A local sensitivity analysis consists of changing one variable at a time while a global consists of 

allowing all the variables to change. The disadvantage of using a local sensitivity analysis is the 

value of one parameter depends on the value of related parameters.  The disadvantage of global 

sensitivity analysis is that it requires a large amount of simulations. 

2.4 General Circulation Models 

When modeling the impact of climate change within SWAT, global coupled ocean-

atmosphere general circulation models (GCM) are used to simulate future meteorological 

variables.  GCMs are mathematical models developed to study the climate of the Earth.  Many 

GCMs have been developed by various institutions to study the future impact of climate change 

on Earth.   

In order to compare the projections from many models, a standard set of climate 

scenarios was developed in 1995 by the Working Group on Coupled Modeling (WGCM) under 

the World Climate Research Programme (WCRP) called the Coupled Model Intercomparison 

Project (CMIP) (Pcmdi, 2017).  The goal of the CMIP was to provide climate scientists with a 

database of coupled GCM simulations that follow standardized boundary conditions 

(https://cmip.llnl.gov/history.html).  Climate scenarios were developed by CMIP to better 

understand the uncertainty between the human contributions to climate change, the response of 

the Earth system to human activities, the impacts of a range of future climates, the implications 

of different approaches to mitigation and adaption (Moss et al., 2010).  Emission scenarios are 

descriptions of future potential emissions that affect the Earth’s radiation balance and are used to 

provide input to climate models.   
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Currently the United Nations Intergovernmental Panel on Climate Change (IPCC) fifth 

assessment report (AR5) (Ipcc, 2013) analyzes the impact of climate change using the 4th phase 

of CMIP known as CMIP5.  The emission scenarios used within CMIP5 are defined as 

Representative Concentration Pathways (RCP). There are four RCPs named RCP2.6, RCP4.5, 

RCP6.0, and RCP 8.5. Each of these numbers represents the estimated targeted radiative forcing 

at the year 2100.  For example, RCP4.5 represents a concentration pathway that approximately 

results in a radiative forcing of 4.5 W m-2 at the year 2100 relative to pre-industrial conditions 

(Taylor et al., 2011).   

One limitation of using GCMs for regional hydrological studies is the coarseness of the 

resolution.  To overcome this limitation the WCRP established the Coordinated Regional 

Downscaling Experiment (CORDEX) dataset (Lennard et al., 2015).  CORDEX created a 

framework in which scientists around the world created high-resolution Regional Climate Model 

(RCM) projections using the CMIP5 RCPs.  Where various GCMs resolution ranged from 88 km 

to 785 km the CORDEX RCM resolution is 69 km (Enes, 2017).  RCMs were created for Africa 

and were selected for use in this study due to their finer resolution over GCMs. 

2.5 Bias Correcting Climate Models 

If the output from a GCM or RCM is not corrected for biases, the model will produce 

simulations that are not realistic (Hansen et al., 2006, Sharma et al., 2007). Bias correction 

methods use a transformation algorithm to adjust RCM and GCM outputs.  The purpose of bias 

correction is to identify possible biases between observed and simulated climate variables.   
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It is assumed that the correction algorithms and its parameterization for current climate 

conditions are also valid for future conditions. Multiple bias correction methodologies have been 

developed and those that have been used in research include: change factor and downscaling 

methods (Park et al., 2011), stochastic weather generators (Le and Sharif, 2015), cumulative 

distribution functions (Pisinaras, 2016), change factor for temperature and quantile mapping for 

precipitation (Basheer et al., 2016), artificial neural networks (Kang et al., 2015), or through the 

use of a fitted histogram equalization function (Yan et al., 2015) and daily bias corrected and 

constructed analogs (Ficklin et al., 2015).  A complete review of downscaling methods can be 

found in (Maraun et al., 2010).  Table 3 provides the main bias correction methodologies used.   

The six main methods of bias correcting summarized in Table 3 are linear scaling, local 

intensity scaling (LOCI), power transformation, variance scaling, delta change, and distribution 

mapping.  Linear scaling corrects the RCM data by adjusting the mean monthly values with a 

correction factor.  While the bias correction is fairly simple to perform, it adjusts all events, 

including extreme weather events, with the same correction factor.  It also cannot correct for the 

frequency of which precipitation events occur.  LOCI attempts to make up for the disadvantages 

of linear scaling by adjusting the RCM data to have the same mean, wet-day frequencies, and 

intensity as the observed data (Schmidli et al., 2006).  However, LOCI cannot reproduce the 

effect of regional processes and does not allow for precipitation variances to be corrected.  Power 

transformation and variance scaling adjust both the variance and mean of precipitation and 

temperature respectively.  However, the power transformation of precipitation is unable to 

accurately correct the probability of dry days and precipitation intensity.  The delta-change 

approach does not account for potential future changes in climate.  In other words, the delta-

change approach does not allow the number of dry vs wet days to change (Graham et al., 2007).  
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Distribution mapping matches the cumulative distribution function (CDF) of the simulated data 

to the observed data.  The simulated data now matches the statistics of the observed data e.g. the 

mean and standard deviation as well as the probability of a precipitation event of the simulated 

data now match the observed data.  The distribution method, however, cannot accurately correct 

the interannual variability of the simulated data.  Teutschbein and Seibert (2012) conducted a 

review of these bias correction methodologies and compared each of them against each other to 

see which method provided more accurate monthly streamflow.  The distribution mapping 

method was found to be the best correction method in the study.  
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Name Literature Summary Advantages Disadvantages 

Linear Scaling 
Lenderink et 

al. (2007) 

Adjusts monthly mean values and offers 

corrected data with a variability more consistent 

with the original RCM data (Graham et al 

2007a). Corrected RCM simulations will 

perfectly agree in their monthly mean values with 

the observations 

Accounts 

for bias in 

mean 

1) All events are 

adjusted with the same 

correction factor. 2) 

Unable to correct for 

bias in wet-day 

frequency and intensity. 

Local Intensity 

Scaling 

Schmidli et 

al. (2006) 

Adjusts both mean and wet-day frequencies and 

wet day intensities in three steps. The adjusted 

control and scenario precipitation both have the 

same mean, wet-day frequency and intensity as 

the observed time series. 

Adjusts 

mean and 

wet day 

frequencies 

and 

intensities. 

1) Does not reproduce 

the effect of regional 

process. 2) Does not 

allow for difference in 

variance to be corrected. 

Power 

Transformation 

of Precipitation 

Leander and 

Buishand 

(2007) 

Uses an exponential form, 𝑎 ∙ 𝑃𝑏 to adjust 

variance of precipitation time series. Find 

parameter b by matching coefficient of variation 

(CV) of RCM with CV of observed daily 

precipitation. Then long term monthly mean of 

observed precip is matched with historical RCM 

using linear scaling. 

 Accounts 

and corrects 

for both 

mean and 

variance in 

precipitation 

time series 

1) Limited to 

precipitation 2) Does not 

provide corrected RCM 

data with accurate 

probability of dry days 

and precipitation 

intensity. (Teutschbein 

and Seibert, 2012) 

Variance 

Scaling of 

Temperature 

Chen et al. 

(2011) 

RCM-simulated time series is adjusted by linear 

scaling then are shifted on a monthly basis to a 

zero mean. (Teutschbein and Seibert, 2012) 

Corrects for 

mean and 

variance  

Limited to temperature  

Distribution 

mapping 

Sennikovs 

and Bethers 

(2009) 

Corrects the distribution function of RCM-

simulated climate values to agree with the 

observed distribution function.  Create a transfer 

function to shift the occurrence distributions of 

precipitation and temperature (Teutschbein and 

Seibert, 2012) 

Simulated 

data 

statistically 

matches 

observed 

data 

Does not correct 

interannual variability 

and 

temperature/precipitation 

correlation properties of 

simulated data 

Delta Change 

Approach 

Graham et al. 

(2007) 

Use RCM-simulated future change (anomalies) for a 

perturbation of observed data rather than to use the RCM-

simulations of future conditions directly. A multiplicative 

corrections is used for precipitations and an additive 

corrections is used to adjust temperature (Teutschbein and 

Seibert, 2012). 

 

Does not account for potential 

future changes in climate 

dynamics such as the number 

of wet vs dry days (Graham 

2007) 

Table 3: Common bias correction methodologies. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Study Site and Overview of Methodology 

The Senqu river basin within Lesotho was evaluated in this research.  Figure 6 denotes a 

detailed map of the Senqu basin with the locations of the dams, streamflow gauge stations, 

Climate Forecast System Reanalysis (CFSR) stations, and RCM stations.  The Senqu river basin 

contains three different streamflow gauges, SG5, SG17, and SG3.  SG5 and SG17 are upstream 

from the basin outlet streamflow gauge, SG3.  SG17 lies directly downstream of the Mohale 

dam, and SG5 lies downstream of the Katse dam.  Mean annual temperature range from 15.2 °C 

(59.36 °F) in the lowlands to 7 °C (44.6 °F) in the highlands.  Precipitation varies from year to 

year and most of it occurs during the seven-month wet summer season from October to April.  

The peak rainfall period is from December to February and most parts of the country record over 

100 mm per month (Lms, 2013).  The Senqu river basin has a basin area of approximately 20000 

km2 and ranges in elevation from 1400 m to 3470 m.  Figure 7 shows an overview of the 

methodology as well as the data sets presented in this study and how they are used to ultimately 

calculate water scarcity.     
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Figure 6: Map of Senqu River Basin study site. Locations of dams, gauging stations, Regional 

Climate Model (RCM) stations, and Climate Forecast System Reanalysis (CFSR) stations are 

displayed. 
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Figure 7: Modeling framework for evaluating blue water scarcity using the Soil and Water Assessment Tool (SWAT).  The 

abbreviations in the figure are: DEM (Digital Elevation Model), CFSR (Climate Forecast System Reanalysis), CMIP5 (Coupled 

Model Intercomparison Project), SWAT-CUP (SWAT Calibration and Uncertainty Program), EFR (Environmental Flow 

Requirement), RCP (Representative Concentration Pathway), CDF (Cumulative Distribution Function) 
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3.2 The ArcSWAT Model 

SWAT is used in this study to evaluate the blue water available in the Senqu river basin 

by using streamflow  (FLOW_OUT) at the river basin exit, SG3.  The FLOW_OUT SWAT 

output variable is measured in cubic meters per second (cms) and is used as a measure of the 

total water available of the Senqu river.  

The inputs that are required for SWAT to perform a hydrologic analysis are a digital 

elevation model, soils map, land use map, and weather data.  To also perform a climate change 

study, future climate data will be inputted into the ArcSWAT model.  Detailed information on 

the inputs are below. 

3.2.1 Digital Elevation Model 

A 90 m digital elevation model (DEM) of Lesotho was obtained from CGIAR 

Consortium for Spatial Information  based on the global Shuttle Radar Terrain Mission 

(http://srtm.csi.cgiar.org).  This information was used to delineate rivers and watersheds within 

the ArcSWAT interface.   

3.2.2 Soils Map 

A soils map of the world was downloaded from the Food and Agriculture Organization 

(Team, 2007).  The area covering Lesotho was extracted using ArcMap and was projected into 

UTM35S. Lesotho is largely composed of Rhodic Ferralsols, Lithosols, Solodic Planosols, Eutric 

Planosols, and Chromic Cambisols.  
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3.2.3 Land Use Map 

A land use map was downloaded from the Regional Centre for Mapping of Resources for 

Development (RCMRD) GeoPortal (http://geoportal.rcmrd.org).  The map has data from 2014 

and contains the land use classifications of Natural Forest, Plantation Forest, Grassland, 

Shrubland, Orchard, Annual Cropland, Vegetated Wetland, Water Body, Settlement, Mine and 

Quarry, and Otherland. 

3.2.4 Weather Data 

Past weather data from 1970-2010 including daily precipitation, and temperature 

recordings were procured from the Lesotho Meteorological Services (LMS).  SWAT also 

requires the location of local weather stations.  After these data were acquired, it was determined 

to be unfit for use in the SWAT model.  Continuous data are needed for the SWAT model, and 

the data from LMS is missing several months and some years of data.  Because of this, modeled 

data from the Climate Forecast System Reanalysis (CFSR) were used.  CFSR model simulations 

provide climate data in areas where regional climate data may not be available due to lack of 

resources.  The CFSR is a global, high resolution, coupled atmosphere-ocean-land surface-sea 

ice system designed to provide the best estimate of the state of these coupled domains (Ncar, 

2017).  The CFSR simulations use data from the National Centers for Environmental Prediction 

(NCEP).  CFSR daily precipitation and temperature data are available globally for time periods 

from 1979 to March 2011.  The data are given at a 38-km resolution.  A study by Fuka et. al 

(2014) demonstrated that using CFSR precipitation and temperature data to force a watershed 

model provides stream charge simulations that are as good or better than models forced using 

traditional weather gauging stations data (Fuka et al., 2014).  This data has been obtained for 

http://geoportal.rcmrd.org/
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Lesotho and the locations of the CFSR station are shown in Figure 6 located at the beginning of 

this section.  Each CFSR station is denoted with a ‘C’ followed by a number. 

3.2.5 Future Climate Data 

Future climate projections were obtained from the Coordinated Regional Downscaling 

Experiment (CORDEX) dataset.  This data includes precipitation, min/max temperature, relative 

humidity, solar radiation, and wind speed on a daily timescale. CORDEX are regionally 

downscaled climate models established by the World Climate Research Program (WCRP) 

(Lennard et al., 2015).  The RCPs chosen for study were 4.5 and 8.5.  The RCPs are described in 

further detail in (Moss et al., 2010).  The models in this study were also chosen based on their 

location in the family tree, which indicates the similarity among models (Knutti et al., 2013).  

The models chosen are relatively independent based on their location in the tree.  (Pierce et al., 

2009) showed that regardless of the GCMs selected based on the quality of their simulation in 

the region of interest, the results do not provide systematically different results then choosing 

models randomly.  They found that using a multi model ensemble is superior to using any one 

model.  After approximately five models, the model skill asymptotes meaning adding more 

models does not significantly change the accuracy of the results.   

GCMs are used to generate large scale climate scenarios.  When performing an impact 

assessment on a smaller region, it is necessary to downscale the outputs from the GCMs.  This is 

due to scale related sensitivities.  GCMs that are not downscaled do not accurately capture 

weather events on a regional scale.  CORDEX data provides downscaled GCM data that was 

used in this study.  The GCMs chosen from the CORDEX database were ICEHC-EC-EARTH, 

MIROC-MICROC5, and CCCma-CanESM2.  Each of the GCMs were downscaled using the 
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RCA4 model developed by the Swedish Mereological and Hydrological Institute (Kjellstrom et 

al.)  

The bias correction chosen for this study is the distribution mapping method.  This 

method is found throughout literature and has been given many names including ‘probability 

mapping’ (Block Paul et al., 2009, Ines and Hansen, 2006), ‘quantile-quantile mapping’ (Boé et 

al., 2007, Johnson and Sharma, 2011, Piani et al., 2010), and ‘histogram equalization’ (Rojas et 

al., 2011, Sennikovs and Bethers, 2009).  Distribution mapping is done by creating a transfer 

function to shift the occurrence distributions of precipitation and temperature (Sennikovs and 

Bethers, 2009).   For precipitation events the Gamma distribution (Thom, 1958) with shape 

parameter α and scale parameter β is assumed to be suitable. 𝑥 is the normalized daily 

precipitation and the pdf is the probability density function.  

 

𝑝𝑑𝑓(𝑥) =
𝑒

−𝑥
𝛽  ∙ 𝑥𝛼−1

𝛽𝛼 ∙ Γ(𝛼)
; 𝑥 ≥ 0;  𝛼, 𝛽 > 0  (4) 

 

This methodology has been used in multiple studies to analyze precipitation data (Block 

Paul et al., 2009, Boé et al., 2007, Ines and Hansen, 2006, Johnson and Sharma, 2011, Piani et 

al., 2009, Piani et al., 2010).  The shape parameter, α, controls the profile of the distribution.  If 

α<1 this indicates an exponentially shaped Gamma distribution which is asymptotic at both axes. 

If α=1 this is a special case and characterizes an exponential distribution. If α>1 the shape is a 

skewed unimodal distribution curve.  The scale parameter, β, determines the dispersion of the 

Gamma distribution (Teutschbein and Seibert, 2012). If β is small it leads to a more compressed 

distribution which has lower probabilities of extreme events.  Whereas if β is larger this causes a 

stretched distribution and shows higher probabilities of extreme events. 
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In order to create a transfer function y = f(x), where x and y are the simulated and 

corrected values of precipitation respectively, and such that the distribution of y matches that of 

the observations, the cumulative distribution function is plotted (Piani et al., 2009).  The 

Cumulative Distribution Function (CDF) is defined in equation 5.  

𝐶𝐷𝐹(𝑥) = ∫
𝑒

−𝑥′

𝛽  ∙𝑥′(𝛼−1)

𝛽𝛼 ∙ Γ(𝛼)

𝑥

0
𝑑𝑥′ + 𝐶𝐷𝐹(0) (5)  

CDF (0) is the fraction of days with no precipitation.  The transfer function of y = f(x) 

will obey the equation: CDFobs(f(x)) = CDFsim(x).  Figure 8 shows a graphical representation of 

the process using a synthetic data set. 

 

Figure 8: The Probability Density Function (PDF) (a) and Cumulative Distribution Function 

(CDF) (b) of a synthetic data set. Obs and sim are the observed and simulated data respectively. 

The CDF is obtained by integrating the PDF in a. The transfer function is obtained by solving: 

CDFobs(f(x)) =CDFsim(x) in b. 
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Temperature is mapped similarly with a transfer function.  Temperature is assumed to fit 

the Gaussian distribution in equation 6.  

𝑓𝑁(𝑥|𝜇, 𝛿2) = 𝑥(𝛼−1) ∙
1

𝛿∙√2𝜋
∙ 𝑒

−(𝑥−𝜇)2

2𝛿2 ; 𝑥𝜖ℝ (6) 

where 𝜇 is the location parameter and δ is the scaling parameter.  The scale parameter, δ, 

determines the standard deviation which shows how much the Gaussian distribution is stretched 

or compressed.  The location parameter, 𝜇, is the mean and determines the location of the 

distribution.  The transfer function is derived in a similar fashion to the precipitation, where the 

CDF is computed by integrating the Gaussian distribution and solving for CDFobs(f(x)) = 

CDFsim(x).    

The distribution mapping method was chosen  because it gave the best correction results 

when compared against the linear scaling, local intensity scaling, power transformation and 

variance scaling methodologies (Teutschbein and Seibert, 2012). 

The software used to bias correct the data was the tool called CMhyd.  CMhyd is a tool 

that has many bias correction methodologies.  Teutschbein and Seibert (2012) provide a review 

of the bias correction methodologies included in CMhyd.   

3.2.6 Limitations of Data 

It is important to note the limitations of the data used in this study.  Lesotho is a small 

developing country, and as such publicly available data were  limited in their capacity to produce 

accurate results.  Any results elucidated from this study should be looked at with the knowledge 

of its limitations and should only be used to guide water policy or water resource allocation with 

much caution. 
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3.2.6.1 Limitations of SWAT Input Data 

The sources of the main SWAT inputs were described in Sections 3.2.1-3.2.5.  The 

limitations of those inputs are presented in Table 4. The soils map obtained from Food and 

Agricultural Organization is a global soil map since a soils map of Lesotho could not be found.  

The global soil map is very coarse, and does not show all of the soil types within Lesotho.  There 

are five main soil types prevalent in Lesotho, and the FAO map only provides data on three.  The 

land use map obtained from the RCMRD Geoportal is not up to date.  The map presents land use 

in Lesotho in the year 2014.  It also has land use classifications that are not within the SWAT 

land use classification database.  While many of the RCMRD land use classifications could 

match with the appropriate SWAT classification, there was one RCMRD classification labeled 

‘Otherland’ that could not be appropriately matched within the SWAT classification database.  

The author attempted to contact the map producer but was unable to obtain clarification on what 

‘Otherland’ was and had to make a best estimation.  The term ‘Otherland’ was approximately 3% 

of the total land use and was reclassified as ‘South Western Range’.  This choice was made 

based on the land use that was already classified, the land use that was missing, and the author’s 

knowledge of Lesotho.  The author lived in Lesotho for 2 years as a Peace Corps volunteer and 

traveled around the country.    

CFSR weather data were used in lieu of observed weather data as stated previously.  

While observed weather data was available for some parts of Lesotho, it was missing several 

months, and sometimes years of data.  The observed weather stations overlapped with the CFSR 

virtual stations in five locations within Lesotho.  A Kruskal-Wallace test was performed to 

evaluate whether there was a significant difference between the precipitation data at these 

locations.   
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Of the five locations, two of them reported as having a significant difference between the 

data sets.  This suggests the CFSR data set does not accurately capture precipitation events at all 

parts of Lesotho, but due to lack of available data the CFSR data was used. 

Table 4: Limitations of Soil and Water Assessment Tool (SWAT) input data. 

Type of Data Source Limitations 

Soil Map 
Food and Agricultural 

Organization 

This is a global soil map and the resolution for 

the Senqu River basin is coarse.  This map 

doesn't accurately capture all the soil variety 

within the study area. 

Land Use 

Map 

RCMRD Geoportal 

(http://geoportal.rcmrd.org) 

This land use map is from 2014 and some of 

the land use types could not be found within 

the SWAT land use classification system. The 

term 'Otherland' within the land use map also 

was subject to the author's best estimation. 

Weather 
Climate Forecast System 

Reanalysis (CFSR) 

CFSR weather data was used in lieu of 

observed weather data.  CFSR data was 

significantly different in some locations than 

the observed weather data. 

 

3.2.6.2 Limitations of Global Climate Model Data 

As discussed previously, there have been limited SWAT studies evaluating the impact of 

climate change in Southern Africa.  GCMs and RCMs such as the HadRM3P are prevalent for 

developed countries such as the United States (Mote et al., 2015).  The CORDEX-Africa project 

provides 10 RCMs for the Africa region.  The choice of GCM for the study region can have an 

impact on the future SWAT projections.  The CORDEX-Africa GCMs were all able to simulate 

the seasonal mean and annual cycle accurately across Africa, but in some locations individual 

models can exhibit significant biases in some sub-regions and seasons (Nikulin et al., 2012).  A 

common problem within a majority of the CORDEX-Africa GCMs is precipitation events 

occurring too early during the diurnal cycle.   



www.manaraa.com

37 
 

It is recommended and has been shown that using a multi-model average helps offset 

climate variability errors within individual models and produces climate events similar to 

observation data (Pierce et al., 2009).  However, using a multi-model ensemble does not correct 

the systematic bias in the precipitation during the diurnal cycle (Nikulin et al., 2012).  This study 

used a multi-model ensemble as well as individual models, but because of the lack of studies 

within the region, the GCMs chosen for the study may not produce as accurate of results if other 

GCMs had been chosen. 

3.2.7 Calibration and Validation 

 The Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour et al., 2004, 

Abbaspour et al., 2006) within SWAT-CUP (Abbaspour, 2011) was used for model calibration, 

validation, sensitivity, and uncertainty analysis.  SUFI-2 utilizes an objective function to capture 

the majority of observed data within a 95% prediction uncertainty (95PPU) in an iterative 

process.  The Nash-Sutcliffe (NS) objective function was chosen for this study. The 95PPU is 

calculated at the 2.5% and 97.5% level of the cumulative distribution of output variables 

obtained through Latin hypercube sampling.  With each iteration the 95PPU gets smaller.  The 

model was ran for 1000 simulations for 5 iterations.  After each iteration of 1000 simulations, the 

program adjusted the input parameters.   

Two statistics known as the P-factor and the R-factor are used to quantify the fit between 

the 95PPU and the observed variable.  The P-factor is the percentage of observed data enveloped 

by the model and the R-factor is the thickness of the 95PPU envelope.  The larger they are the 

better the 95PPU fit.  It is recommended a P-factor > 70% and a R-factor close to 1 for 

streamflow (Abbaspour, 2011).  Other common statistics used to measure the goodness of fit of 

the calibrated/validated model are the Pearson’s correlation coefficient (r) and coefficient of 
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determination (R2), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE), RMSE-

observations standard deviation ratio (RSR), and Percent Bias (PBIAS).  The statistics used to 

measure the goodness of fit in this study were the NSE, RSR, and PBIAS.  Although the R2 

value is given by SWAT-CUP, it was not used as a determining statistic for this model 

evaluation.  The R2 statistic is oversensitive to outliers and insensitive to additive and 

proportional differences and has not been recommended to be used to determine the goodness of 

fit for hydraulic models (Legates and Mccabe, 1999). 

The NSE is provided in equation 7 and is a normalized statistic that determines the 

relative magnitude of the residual variance compared to the measured data variance (Nash and 

Sutcliffe, 1970).  𝑌𝑖
𝑜𝑏𝑠 is the ith observation for the observed dataset being evaluated, 𝑌𝑖

𝑠𝑖𝑚 is the 

ith simulated value for the modeled dataset, 𝑌𝑚𝑒𝑎𝑛 is the mean of the observed dataset, and n is 

the total number of observations.  

𝑁𝑆𝐸 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

] (7) 

The NSE ranges from -∞ to 1, where 1 is the optimal value.  If the NSE value is negative, 

it means the mean of the observed data set is a better predictor of the observed data than the 

simulated value, which is not acceptable.  The NSE has been used in several hydrological 

studies, and Servat and Dezetter (1991) found the NSE to be the best objective function for 

reflecting the overall fit of a hydrograph.  The generally accepted range of NSE values is 

provided by (Moriasi et al., 2007) and are in Table 5.  

The PBIAS provided in equation 8, measures the average tendency of the simulated data 

to be larger or smaller than their observed counterparts (Gupta Hoshin et al., 1999).   The 

variables in the given equation are the same as in the NSE equation. 
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𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)𝑛

𝑖=1 ∗(100)

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

]  (8) 

The best value for the PBIAS is zero, where a low magnitude indicates accurate model 

simulation.  The PBIAS is used in this study because 1) It was recommended by the American 

Society of Civil Engineers (Asce, 1993), and 2) it has the ability to clearly indicate poor model 

performance (Moriasi et al., 2007). 

The RSR provided in equation 9 is calculated as the ratio of the RMSE and the standard 

deviation.  The RSR standardizes the RSME using the observation’s standard deviation. 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=  [

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

] (9) 

The RSR has an optimal value of 0, which indicates a perfect model simulation.  The 

RSR was chosen because it is a common statistic used in error index statistics and is a clear 

indicator of model performance (Moriasi et al., 2007). 

Table 5: General performance ratings for recommended statistics for a monthly time step 

(Moriasi et al., 2007).  

Performance Rating RSR NSE PBIAS (%) 

Very Good 0.00≤RSR≤0.50 0.75<NSE≤1.00 PBIAS < ±10 

Good 0.50<RSR≤0.60 0.65<NSE≤0.75 ±10 ≤ PBIAS < ±15 

Satisfactory 0.60<RSR≤0.70 0.50<NSE≤0.65 ±15 ≤ PBIAS < ±25 

Unsatisfactory RSR>.7 NSE≤0.50 PBIAS ≥ ±25 

 

Three streamflow gauging stations were calibrated for the period given in Table 6. The 

two upstream streamflow gauges, SG5, and SG17, were calibrated from 1986 to 2002. The 

downstream streamflow gauge, SG3 was calibrated from 1985 to 2002 and validated from 2003 

to 2013  
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Table 6: Calibration and validation periods for streamflow gauging stations. 

Station Calibration Period Validation Period 

SG3 1985-2002 2003-2013 

SG5 1985-1990 - 

SG17 1985-1990 - 

 

3.3 Indicators of Hydrologic Alteration Analysis  

An Indicators of Hydrologic Alteration analysis is a common tool used to evaluate 

whether dams impact the hydrologic characteristics of a river basin (Cochrane et al., 2014, 

Timpe and Kaplan, 2017). An Indicators of Hydrologic analysis was performed in this study to 

determine the impact of the Katse and Mohale dams on the flow of the river at the three gauging 

stations.  Flow duration curves were created for each station for pre-dam and post-dam analysis.  

A Kruskal-Wallace test was performed on each flow duration curve to determine if there was a 

significant difference in change of streamflow between pre and post dam construction.  The null 

hypothesis of the Kruskal-Wallace test assumes the two sets of data are not significantly 

different. If the calculated p-value is less than 0.05 (p<0.05) the null hypothesis can be rejected. 

3.4 Water Scarcity 

Blue water scarcity provided in equation 10 was defined as the ratio of the blue water 

footprint in the basin to the blue water available in that basin (Hoekstra et al., 2011). 

 

𝐵𝑊𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦 (𝑥,𝑡) = 𝐵𝑊𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑥,𝑡) 𝐵𝑊𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑥,𝑡)⁄   (10) 

 

The blue water footprint, 𝐵𝑊𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡(𝑥,𝑡), of human activities is defined as “the volume 

of surface and groundwater consumed as a result of that activity, whereby consumption refers to 

the volume of freshwater used and then evaporated or incorporated into a product” (Hoekstra et 

al., 2012).  𝐵𝑊𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is the amount of water that is available for use for a specific location (x) 

at time of year (t).  Not all of the water that resides within the river is available for use.   
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Hence, the definition of 𝐵𝑊𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is the amount of water that can be abstracted without 

affecting the ecology of the river.  The amount of water needed by the river to maintain its 

ecology is known as the Environmental Flow Requirement (EFR).  The EFR of the Senqu river 

is unknown, hence the presumptive standard method will be used (Richter et al., 2012).  The 

presumptive standard method assumes that 20% of the natural monthly mean flow can be 

allocated for consumptive use.  It has been used in similar previous studies in calculating water 

availability when the EFR of a river was unknown (Hoekstra et al., 2012, Rodrigues et al., 2014).  

Hoekstra et al. (2012) used the presumptive method when evaluating the water availability of the 

Senqu river within South Africa.  EFR is represented in equation 11. 

𝐸𝐹𝑅𝑥,𝑡 = 0.8 ∗ 𝑄𝑚𝑒𝑎𝑛(𝑥,𝑡) (11) 

 

where Qmean (x, t) is the long term monthly mean, for a specific location (x) at time of year (t).  In 

this study, Qmean (x, t) is defined as the streamflow at the SG3 location.  The term 𝐵𝑊𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is 

then computed in equation 12. 

  

𝐵𝑊𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑄(𝑥,𝑡) −  𝐸𝐹𝑅𝑥,𝑡 (12) 

 

Hoekstra et al. (2012) measures the blue water footprint of water basins by converting the 

data from the National Water Footprint Report (Mekonnen and Hoekstra, 2011).  The National 

Water Footprint Report gives the blue water footprints of individual countries.  Hoekstra et al. 

(2012) converts this data into Blue Water Footprints by basins.  This report will use the original 

data from the National Water Footprint Report and use the data to measure the Blue Water 

Scarcity of Lesotho.  
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This study calculated the Blue Water Scarcity on a yearly basis.  The SWAT output 

provided the Blue Water Available from the SG3 river basin outlet.  The Blue Water Footprint 

was assumed to be constant for the future scenarios.  What this study answers, is given Lesotho’s 

water footprint, how will future climate change scenarios impact Lesotho’s blue water scarcity.  

The degree of blue water scarcity was divided into four categories as provided by Hoekstra and 

Mekonnen (2012): 

• Low blue water scarcity (<100%): the blue water footprint is lower than 20% of natural 

runoff and does not exceed blue water availability; river runoff is unmodified or slightly 

modified; presumed environmental flow requirements are not violated. 

• Moderate blue water scarcity (100–150%): the blue water footprint is between 20 and 

30% of natural runoff; runoff is moderately modified; environmental flow requirements 

are not met. 

• Significant blue water scarcity (150–200%): the blue water footprint is between 30 and 

40% of natural runoff; runoff is significantly modified; environmental flow requirements 

are not met. 

• Severe water scarcity (>200%). The monthly blue water footprint exceeds 40% of natural 

runoff; runoff is seriously modified; environmental flow requirements are not met. 

 The latest global water footprint analysis provides Lesotho’s blue water footprint to be 

2850 million m3/year (Wang and Zimmerman, 2016).  This is the blue water footprint for the 

entirety of Lesotho.  Since the Senqu river basin is approximately two-thirds the size of Lesotho, 

it would not be accurate to judge Lesotho’s level of water scarcity on its entire footprint. Three 

scenarios were used which evaluate the water footprint based on population. 
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The first scenario was a conservative outlook which evaluated the entire country 

assuming that the Senqu River basin is the sole source of water.  Hence the entire water footprint 

of Lesotho was used.  The second scenario took the national blue water footprint and divided by 

the total population of Lesotho to obtain a per capita water footprint.  The modified water 

footprint was obtained by multiplying per capita water footprint by the population within the 

Senqu basin.  The third scenario used the per capita blue water footprint and multiplied by the 

projected population growth per year.  This provided a water footprint that increased yearly with 

expected population growth.  The economic status of Lesotho was assumed to remain constant, 

and the increased blue water demand due to population growth was evaluated.  Scenario 3 

evaluated water scarcity over the entirety of Lesotho similar to Scenario 1.  This was done 

because it is not known in which areas of Lesotho the population would increase.  The projected 

population increase from 2020 to 2100 is presented in Figure 9. 

 

Figure 9: Projected population increase in Lesotho from 2020 to 2100. Data obtained from the 

World Population Review (Lesotho Population, 2018). 

 

2.0E+06

2.2E+06

2.4E+06

2.6E+06

2.8E+06

3.0E+06

3.2E+06

3.4E+06

3.6E+06

3.8E+06

4.0E+06

2020 2030 2040 2050 2060 2070 2080 2090 2100

P
o

p
u

la
ti

o
n

Year



www.manaraa.com

44 
 

 The projected population growth rate was obtained from the World Population Review 

online database (Lesotho Population, 2018).  The population of Lesotho is expected to reach 

approximately 3.9 million people by 2100.    
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Results 

4.1.1 Bias Correction 

Each GCM station was downscaled using the same RCA4 method and had the same 

spatial location within Lesotho.  Each downscaled GCM is henceforth referred to as RCM.  Each 

RCM precipitation and min/max temperature were bias-corrected using the CDF mapping 

procedure.  Figure 10 shows the results of the ICHEC CDF mapping procedure for precipitation 

while Figures 11 and 12 show CDF mapping for min and max temperatures respectively at RCM 

station 1.  Only the ICHEC bias corrected data are shown below for the first station.  The bias 

correction methodology corrects all of the RCM models at each station in the same way.  It is not 

necessary to graphically represent each RCM result.    

 

Figure 10: ICHEC precipitation Cumulative Distribution Function mapping results for station 1. 

ICHEC-BC-1 refers to the bias-corrected Regional Climate Model (RCM) data at location R1, 

ICHEC-RAW-1 refers to the unbias-corrected RCM weather data at location R1, and CFSR-1 

refers to the Climate Forecast System Reanalysis weather data at location C1. 
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Figure 11: ICHEC minimum temperature Cumulative Distribution Function mapping results for 

station 1. ICHEC-BC-1 refers to the bias-corrected Regional Climate Model (RCM) data at 

location R1, ICHEC-RAW-1 refers to the unbias-corrected RCM weather data at location R1, 

and CFSR-1 refers to the Climate Forecast System Reanalysis weather data at location C1. 

 

Figure 12: ICHEC maximum temperature Cumulative Distribution Function mapping results for 

station 1. ICHEC-BC-1 refers to the bias-corrected Regional Climate Model (RCM) data at 

location R1, ICHEC-RAW-1 refers to the unbias-corrected RCM weather data at location R1, 

and CFSR-1 refers to the Climate Forecast System Reanalysis weather data at location C1. 

The term ICHEC-BC-1 refers to the bias-corrected RCM data at location R1, ICHEC-

RAW-1 refers to the unbias-corrected RCM weather data at location R1, and CFSR-1 refers to 

the CFSR weather data at location C1.  The bias correction was successful in correcting the raw 

RCM CDF to match the CFSR weather data.  The bias-corrected precipitation and temperature 

results now reproduce the daily mean and the standard deviation on a monthly basis of the CFSR 

data set shown in Figures 13 through 16.   
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Figure 13: Monthly mean precipitation results for ICHEC bias correction. ICHEC-BC-1 refers to 

the bias-corrected Regional Climate Model (RCM) data at location R1, ICHEC-RAW-1 refers to 

the unbias-corrected RCM weather data at location R1, and CFSR-1 refers to the Climate 

Forecast System Reanalysis weather data at location C1. 

The CDF mapping helped to correct the mean monthly precipitation as presented in 

Figure 13.  The ICHEC-RAW-1 data was greatly over simulating the amount of precipitation for 

every month.  After CDF mapping, the ICHEC-BC-1 matches the CFSR-1 precipitation.  

 

Figure 14: Monthly standard deviation precipitation results for ICHEC bias correction. ICHEC-

BC-1 refers to the bias-corrected Regional Climate Model (RCM) data at location R1, ICHEC-

RAW-1 refers to the unbias-corrected RCM weather data at location R1, and CFSR-1 refers to 

the Climate Forecast System Reanalysis weather data at location C1. 

Figure 14 demonstrates that before CDF mapping, the raw RCM monthly standard 

deviation of precipitation, ICHEC-RAW-1, was much greater than the CFSR-1. 
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  After CDF mapping, the bias corrected data, ICHEC-BC-1, much more closely matches 

CFSR-1.  It is not an exact match in all instances, but it is much more representative of the 

precipitation in the region. 

 

Figure 15: Monthly mean maximum temperature results for ICHEC bias correction. Regional 

Climate Model (RCM) data at location R1, ICHEC-RAW-1 refers to the unbias-corrected RCM 

weather data at location R1, and CFSR-1 refers to the Climate Forecast System Reanalysis 

weather data at location C1. 

Figure 15 demonstrates that before CDF mapping, the raw RCM mean monthly 

maximum temperature, ICHEC-RAW-1, was significantly less than the CFSR-1.  After CDF 

mapping, the bias corrected data, ICHEC-BC-1, much more closely matches CFSR-1.   

  

Figure 16: Monthly mean minimum temperature results for ICHEC bias correction. Regional 

Climate Model (RCM) data at location R1, ICHEC-RAW-1 refers to the unbias-corrected RCM 

weather data at location R1, and CFSR-1 refers to the Climate Forecast System Reanalysis 

weather data at location C1. 
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Figure 16 demonstrates that before CDF mapping, the raw RCM mean monthly minimum 

temperature, ICHEC-RAW-1, was similar to CFSR-1.  Minimum temperature didn’t have much 

variance and didn’t differ from the CFSR.  After CDF mapping, the bias corrected data, ICHEC-

BC-1, matches CFSR-1.   

 

Figure 17: Monthly standard deviation of maximum temperature results for ICHEC bias 

correction. Regional Climate Model (RCM) data at location R1, ICHEC-RAW-1 refers to the 

unbias-corrected RCM weather data at location R1, and CFSR-1 refers to the Climate Forecast 

System Reanalysis weather data at location C1. 

Figure 17 demonstrates that before CDF mapping, the raw RCM standard deviation of 

mean maximum temperature, ICHEC-RAW-1, was significantly less than CFSR-1.  ICHEC-

RAW-1 matched CFSR-1 between July and August.  The overall shape of ICHEC-RAW-1 

closely resembles CFSR-1.  After CDF mapping, the bias corrected data, ICHEC-BC-1, much 

more closely matches CFSR-1.   
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Figure 18: Monthly standard deviation of minimum temperature results for ICHEC bias 

correction. Regional Climate Model (RCM) data at location R1, ICHEC-RAW-1 refers to the 

unbias-corrected RCM weather data at location R1, and CFSR-1 refers to the Climate Forecast 

System Reanalysis weather data at location C1. 

Figure 18 demonstrates that before CDF mapping, the raw RCM standard deviation of 

mean minimum temperature, ICHEC-RAW-1, did not resemble CFSR-1.  ICHEC-RAW-1 was 

similar in value to CFSR-1 between January and May, then was significantly less than CFSR-1 

between June and July.  After CDF mapping, the bias corrected data, ICHEC-BC-1, much more 

closely matches CFSR-1. 

4.1.2 Indicators of Hydrologic Alteration Results  

The Indicators of Hydrologic Alteration analysis was performed for all three gauging 

stations, SG5, SG17 and SG3.  The generated flow duration curves and subsequent Kruskal-

Wallace test for pre and post dam periods demonstrated that for SG5 and SG17 a significant 

difference in streamflow occurred while SG3 was not significantly impacted by the construction 

of the dams. This is thought to be due to the SG3 station being significantly downstream of both 

of the dams.  The flow duration curve along with the p-value statistic for SG5, SG17, and SG3 

are shown in Figures 19, 20, and 21 respectively.      
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Figure 19: Flow Duration Curve displaying impact of the Katse dam on streamflow at the SG-5 

gauging station as well as the Kruskal-Wallace p-statistic.  The p-statistic is less than 0.05, thus 

the null hypothesis is rejected and the flows are determined to be significantly different. 

 

Figure 20: Flow Duration Curve displaying impact of the Mohale dam on streamflow at the SG-

17 gauging station as well as the Kruskal-Wallace p-statistic. The p-statistic is less than 0.05, 

thus the null hypothesis is rejected and the flows are determined to be significantly different. 

The flow duration curve displayed in Figure 19 shows the impact of the Katse dam on 

streamflow gauge SG-5 over a pre-impact and post-impact period of 13 years.  High flows do not 

appear to be impacted by the dam, however, low flows that occur at least 60% of the time appear 

to be significantly different.  The post-impact period has a higher flow rate on flows that occur at 

between 60% and 100% of the time.  The Kruskal-Wallace test produced a p-statistic of 7.7x10-4 

which signifies the null hypothesis may be rejected and the flows are significantly different.The 
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flow duration curve displayed in Figure 20 shows the displays of the Mohale dam on streamflow 

gauge SG-17 over a pre-impact and post-impact period of 10 years.  Both the probability of high 

and low flows appears to be significantly different.  The pre-impact period has a higher flow rate 

between 0% and 60% exceedance probability.  The post-impact period has higher flow rate 

between 60% and 100% exceedance probability. The Kruskal-Wallace test produced a p-statistic 

of 6.98x10-33 which signifies the null hypothesis may be rejected and the flows are significantly 

different. 

 

Figure 21: Flow Duration Curve displaying impact of the Katse and Mohale dam on streamflow 

at the SG-3 gauging station as well as the Kruskal-Wallace p-statistic. The p-statistic is greater 

than 0.05, thus the null hypothesis is not rejected and the flows are not determined to be 

significantly different. 

The flow duration curve displayed in Figure 21 displays the impact of the Katse, and 

Mohale dam on streamflow gauge SG-3 over a pre-impact and post-impact period of 7 years.  

The pre-impact and post-impact period have a similar flow rate between 0% and 80% 

exceedance probability.  The post-impact period has higher flow rate between 80% and 100% 

exceedance probability. The Kruskal-Wallace test produced a p-statistic of 0.04 which signifies 

the null hypothesis may not be rejected and the flows are not significantly different. 
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4.1.3 Calibration and Validation Results 

A global sensitivity analysis was performed to identify the parameters stream flow was 

sensitive to. Overall, seven parameters were found to be most important: Snow fall temperature 

(SUB_SFTMP), precipitation lapse rate (PLAPS), temperature lapse rate (TLAPS), groundwater 

delay time (GW_DELAY), Soil evaporation compensation factor (ESCO), the SCS curve 

number (CN2), and the hydraulic conductivity (CH_K2).  A complete description of all the 

SWAT parameters can be found in the SWAT user manual (Arnold et al., 2002).  

Table 7 provides a list of these parameters and their descriptions, as well as the final 

minimum and maximum values used for calibration.  

Table 7: Global sensitivity key parameters with the final minimum and maximum ranges for 

calibration. 

Parameter Name  Description Units Min Max 

v_SUB_SFTMP().sno Snow fall temperature C 2.618 9.12 

v_PLAPS.sub Precipitation lapse rate mm/km 71.68 994 

v_TLAPS.sub Temperature lapse rate C/km -11.6 -2.2 

v_GW_DELAY.gw Groundwater delay time day 230.4 491.6 

v_ESCO.hru Soil evaporation compensation factor - 0.487 0.853 

r_CN2.mgt 

SCS runoff curve number for moisture 

condition II - -0.19 0.118 

v_CH_K2.rte 

Effective hydraulic conductivity in the 

main channel mm/h 109.5 369.2 

 

SG5 and SG17 were calibrated first between the years of 1985 and 1990.  These are the 

years before construction of the dams began.  Because specific information regarding the design 

of the dams were unknown, they could not be simulated within ArcSWAT.  The results of the 

Indicators of Hydrologic Alteration showed that the dams significantly altered the streamflow at 

the SG5 and SG17 gauge station, thus they were only calibrated for the years before dam 

construction and not validated.  SG3 was not significantly impacted by dam construction and 

was used for calibration pre-dam construction and for validation post-dam construction.   
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The results of their calibration statistics are shown in Table 8 as well as Figures 22 and 

23 respectively. SG5 and SG17 were only calibrated and not validated due to the lack of 

available data on the dam specifications.  After SG5 and SG17 were calibrated their parameters 

were held steady and SG3 was calibrated.  SG3 was calibrated from 1985-2002 and validated 

from 2003-2013.  The results of the calibration and validation are shown in Figure 24. 

Table 8: Calibration and validation statistics for the three streamflow gauges. 

  Calibration Validation 

  SG5 SG17  SG3 SG3 

NSE 0.47 0.57  0.55 0.59 

PBIAS 4.3 10.1  -3.2 1.8 

RSR 0.66 0.73  0.67 0.64 

 

The calibration statistics for each of the stations varied in performance.  The NSE value 

for SG5 was in the unsatisfactory range.  This is due to the model’s inability to simulate extreme 

events accurately.  The NSE is also sensitive to outlying flows.  Another reason for poor 

performance could be due to the lower number of observed data available for SG5 as compared 

to the other two stations.  The NSE for SG17 and SG3 both fell into the satisfactory performance 

range.  The PBIAS for SG5 and both SG3 calibration and validation were in the very good 

performance range while SG17 fell into the good range.  This indicates an accurate model 

simulation when comparing the simulated values to the observed data.  The RSR was in the 

unsatisfactory range for SG17, but in the satisfactory range for SG5 and SG3.    
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Figure 22: Calibration results for the SG5 streamflow gauge station. 

 

 

Figure 23: Calibration results for the SG17 streamflow gauge station. 
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Figure 24: Calibration and validation results for the SG3 streamflow gauge station. 
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4.1.4 Climate Change Impact on Precipitation 

After the SWAT model was calibrated and validated, the bias-corrected weather inputs 

for each RCM was inputted into the model.  An average model ensemble was also inputted into 

the model by averaging the weather inputs of each RCM and it is denoted as Ensemble.  The 

relative changes in precipitation and streamflow for each of the RCPs were analyzed based on 

the wet and dry seasons in Lesotho.  The wet season is from October to April and the dry season 

is from May to September.  The study period of 2020 to 2100 was broken into two periods 

denoted as mid-century and late-century.  Mid-century is denoted from 2020-2060 and late-

century is denoted from 2061-2100.  Table 9 shows the relative precipitation change when 

compared to the respective model historic period (1979-2005). 

 

 

The results of precipitation change varied between the wet and dry seasons.  The results 

varied depending on the RCM used.  Typically, 3 of the 4 RCM outputs agreed on an overall 

increase or decrease in precipitation.  An increase in three of the model outputs for the wet 

season in both the mid and late century in RCP 4.5.   

 

 
ICHEC MIROC CCCma Ensemble 

wet - RCP4.5 (Mid-Century) 0% -7% 16% 3% 

dry - RCP4.5  (Mid-Century) -13% -12% -35% -20% 

wet - RCP4.5 (Late-Century) 5% -7% 9% 2% 

dry - RCP4.5  (Late-Century) 4% 17% -15% 3% 

wet - RCP8.5 (Mid-Century) 2% -11% 11% 1% 

dry - RCP8.5  (Mid-Century) 16% 2% -21% -1% 

wet - RCP8.5 (Late-Century) 6% -1% 10% 5% 

dry - RCP8.5  (Late-Century) -1% -25% -10% -12% 

 

Table 9: Relative changes in average precipitation for each Representative 

Concentration Pathway (RCP) during the wet season (Oct-Apr) and dry season 

(May-Sept).  Mid-Century refers to the years 2020-2060 and late-century refers to 

2061-2100. The highlighted figures in each column denote significant differences 

between the RCPs.  The different colors for the MIROC model indicate which 

numbers should be compared. 
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There was a decrease in the overall precipitation during the dry period in the RCP 4.5 

during the mid-century and an increase in precipitation during the late century.   

RCP 8.5 produced similar trends in precipitation change as RCP 4.5.  The largest 

differences between RCP 4.5 and RCP 8.5 are highlighted in the table.  For example, the 

ICHEC-RCP 4.5 model scenario resulted in a decrease of 13% in precipitation for the mid-

century dry period, while the ICHEC-RCP 8.5 model resulted in an increase of 16% during the 

mid-century dry period.  The different colors for the MIROC RCM indicate which numbers 

should be compared.  Figures 25 and 26 show the average monthly relative precipitation change 

for RCP 4.5 and RCP 8.5 respectively. 

The average monthly percent change in precipitation for RCP 4.5 is presented in Figure 

25. The mid-century had a tendency to decrease in precipitation for all the RCMs.  The late-

century experienced an overall decrease to precipitation in the beginning of the year and an 

increase from September to December.  The MIROC RCM showed the greatest increase in 

precipitation (104%) during September in the late-century. 

The average monthly percent change in precipitation for RCP 8.5 is presented in Figure 

26.  The percent change fluctuated between increasing and decreasing for all the climate models 

during the mid-century.  The ICEC RCM saw the greatest increase during August of the mid-

century.  The late century experienced an average decrease in precipitation until September 

where it increased through December. 
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Figure 25: Average Monthly Percent Change in Precipitation for Representative Concentration Pathway 4.5 for both mid-century 

(2020-2060) and late-century (2061-2100).  Mid-century had a tendency to decrease in precipitation.  The late-century experienced an 

overall decrease to precipitation in the beginning of the year and an increase from September to December.  

  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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-100%

-50%

0%

50%

100%

150%
RCP 4.5

2020-2060 2061-2100

A
ve

ra
ge

 M
o

n
th

ly
 P

re
ci

p
it

at
io

n
C

h
an

ge
 F

ro
m

 B
as

el
in

e



www.manaraa.com

60 
 

 

Figure 26: Average Monthly Precipitation Percent Change for Representative Concentration Pathway 8.5 for both mid-century (2020-

2060) and late-century (2061-2100).  The percent change fluctuated between increasing and decreasing for all the climate models 

during the mid-century.  The late century experienced a decrease in precipitation until September where it increased through 

December. 
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4.1.5 Projected Blue Water Yield (Streamflow) 

The average relative change in streamflow for the wet and dry seasons of each RCP is 

presented in Table 10. Just as the relative change in precipitation was compared to the historic 

period, the relative change in streamflow was compared in the same way.  Mid-century and late-

century are defined the same way as in the previous section. 

Table 10: Relative change in streamflow for wet season (Oct-Apr) and dry season (May-Sept) for 

each Representative Concentration Pathway.  Mid-Century refers to the years 2020-2060 and 

late-century refers to 2061-2100. 

 

ICHEC MIROC CCCma Ensemble 

wet - RCP4.5 (Mid-Century) -42% -48% -35% -48% 

dry - RCP4.5 (Mid-Century) -48% -54% -50% -52% 

wet - RCP4.5 (Late-Century) -36% -42% -33% -41% 

dry - RCP4.5 (Late-Century) -39% -54% -47% -48% 

wet - RCP8.5 (Mid-Century) -37% -52% -35% -47% 

dry - RCP8.5 (Mid-Century) -39% -56% -47% -51% 

wet - RCP8.5 (Late-Century) -37% -48% -34% -43% 

dry - RCP8.5 (Late-Century) -41% -60% -57% -52% 

 

Each RCM was compared to its respective historic reference baseflow period.  The 

historic reference baseflow period is from 1979-2005.  Each RCM showed a significant decrease 

in streamflow for each RCP.  The larger decreases in streamflow occurred during the dry season 

for both RCPs.  There was not a large difference in percent change in streamflow between  

RCP4.5 and RCP8.5. Figures 27 and 28 show the average monthly percent changes in 

streamflow for RCP 4.5 and 8.5 respectively.  There is not a large difference in the average 

monthly streamflow between the two periods (2020-2060 and 2061-2100).  There is only one 

instance where there is a positive change in streamflow for both the RCP 4.5 and RCP 8.5 

periods and that is produced by the CCCma RCM.  The CCCma produced a positive change in 

average January streamflow in the late century.    
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Figure 27: Average Monthly Percent Change in Streamflow Representative Concentration Pathway 4.5 for both mid-century (2020-

2060) and late-century (2061-2100).  Both periods experienced a negative decrease in streamflow.  The CCCma model saw a brief 

increase in streamflow for January in the late century. 
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MIROC -41%-46%-52%-41%-38%-49%-59%-63%-66%-64%-43%-51%-28%-36%-53%-40%-47%-51%-60%-64%-51%-62%-38%-42%

CCCma -6% -27%-40%-32%-33%-42%-51%-62%-66%-70%-35%-42% 4% -35%-42%-36%-25%-41%-49%-59%-65%-64%-27%-32%

Ensemble -37%-41%-43%-39%-40%-46%-53%-61%-66%-69%-56%-56%-24%-34%-42%-38%-36%-41%-49%-57%-62%-65%-49%-43%
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Figure 28: Average Monthly Streamflow Percent Change for Representative Concentration Pathway 8.5 for both mid-century (2020-

2060) and late-century (2061-2100).  Both periods experienced a negative decrease in streamflow.  The CCCma model saw a brief 

increase in streamflow for January in the late century. 
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MIROC -43%-48%-59%-41%-37%-54%-60%-66%-66%-71%-52%-55%-30%-44%-50%-39%-49%-50%-62%-70%-70%-74%-63%-43%

CCCma -13%-29%-37%-36%-33%-44%-51%-49%-62%-64%-37%-37% 9% -36%-51%-50%-45%-50%-57%-64%-72%-61%-25%-27%

Ensemble -36%-41%-44%-41%-39%-46%-53%-57%-62%-68%-56%-51%-22%-39%-44%-40%-41%-44%-51%-60%-66%-69%-55%-38%
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The average monthly percent change in streamflow for RCP 4.5 is presented in Figure 27. 

The percent change fluctuated between increasing and decreasing for all the climate models 

during the mid-century.  Both periods experienced a negative decrease in streamflow for all the 

RCMs.  The only increase in streamflow was simulated by the CCCma model for January (4%) 

during the late century.  The average monthly percent change in streamflow for RCP 8.5 is 

presented in Figure 28.  The percent change fluctuated between increasing and decreasing for all 

the climate models during the mid-century.  Both periods experienced a negative decrease in 

streamflow for all the RCMs.  The only increase in streamflow was simulated by the CCCma 

model for January (9%) during the late century. 

4.1.6 Water Scarcity Analysis 

4.1.6.1 Historic Water Scarcity 

The historic water scarcity spanning the years 1979-2005 is displayed in Figure 29. 

 

Figure 29: Historic water scarcity from 1979-2005.  The observed water scarcity was calculated 

using observed streamflow.   
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The historic water scarcity was calculated by adjusting the national blue water footprint 

to represent the population during the respective year.  The historic national blue water footprint 

was estimated by multiplying the national water footprint per capita (1519 m3yr-1 per person) by 

the population of the nation during the appropriate year.  All of the RCMs in Figure 29 have very 

low water scarcity as compared with the estimated water scarcity based on the observed 

streamflow data.  The historic water scarcity showed two instances of significant water scarcity 

in 1983 and 1984, and one instance of moderate water scarcity in 1992.  The years of water 

scarcity in the historical water scarcity match the years Lesotho faced drought, documented for 

the years 1983, 1990, and 2002 (Masih et al., 2014).  The RCMs failed to capture the extreme 

climate events that resulted in drought occurrence.  This is not uncommon as RCMs have 

difficulty capturing and replicating historical extreme weather events (Panaou et al., 2018).  This 

increases uncertainty in their ability to capture future extreme weather events. 

4.1.6.2 Future Water Scarcity 

Water scarcity was calculated using the water footprint in three scenarios.  Scenario 1 

assumes the Senqu river basin is the sole source of blue water available, and the entire national 

blue water footprint of 2850 million m3yr-1 is used in the calculation of water scarcity.  The water 

footprint for scenario 2 was calculated as 1425 million m3yr-1, which is estimated as the product 

of the water footprint per capita (1519 m3yr-1 per person) and the population living in the water 

basin.  The water footprint for scenario 3 was calculated by using the water footprint per capita 

(1519 m3yr-1 per person) and multiplying by the projected population of Lesotho through 2100.  

Figures 30 – 33 display the results of the water scarcity analysis for scenario 1 on an annual 

basis.   
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Figure 30: Water Scarcity Scenario 1 mid-century (2020-2060) for Representative Concentration 

Pathway 4.5. Scenario 1 assumes the Senqu river basin is the sole source of blue water available, 

and the entire national blue water footprint is used in the calculation of water scarcity. 

 

 

 

Figure 31: Water Scarcity Scenario 1 late century (2061-2100) for Representative Concentration 

Pathway 4.5. Scenario 1 assumes the Senqu river basin is the sole source of blue water available, 

and the entire national blue water footprint is used in the calculation of water scarcity. 
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There were no water scarcity measurements above 100% for RCP 4.5 for both the mid 

and late century time periods.  This indicates low blue water scarcity for the period.  The 

MIROC RCM produced the water scarcity measurement of 93% during the year 2044.  The 

ICHEC, MIROC, and Ensemble each produced a similar peak in water scarcity in the years 

2060, 2066, and 2078.      

 

 

Figure 32: Water Scarcity Scenario 1 mid-century (2020-2060) for Representative Concentration 

Pathway 8.5. Scenario 1 assumes the Senqu river basin is the sole source of blue water available, 

and the entire national blue water footprint is used in the calculation of water scarcity. 
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Figure 33: Water Scarcity Scenario 1 late-century (2061-2100) for Representative Concentration 

Pathway 8.5. Scenario 1 assumes the Senqu river basin is the sole source of blue water available, 

and the entire national blue water footprint is used in the calculation of water scarcity. 

RCP 8.5 produced four years in total that the water scarcity was above 100%.  The 

MIROC model produced a value of 104% in 2028 and 101% in 2088.  The CCCma model 

produced a value of 111% in 2030 and 101% in 2063.  Values between 100% and 150% 

represent the blue water availability is exceeded and the environmental flow requirements of the 

stream are not met.    

The results for scenario 2 have significantly lower water scarcity measurements than 

scenario 1.  The time series graphs for scenario 2 are presented in Figures 34-37.  There were 

only 2 years in mid-century RCP 8.5 where the water scarcity measurement was above 50% but 

no measurement exceeded 60%. 
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Figure 34: Water Scarcity Scenario 2 mid-century (2020-2060) for Representative Concentration 

Pathway 4.5. Scenario 2 is a modified national water footprint using only the population within 

the Senqu basin. 

 The MIROC RCM within Figure 34 produced the highest incidence of water scarcity of 

47% in 2044.  All the values fell within low water scarcity.   

 

Figure 35: Water Scarcity Scenario 2 late-century (2061-2100) Representative Concentration 

Pathway 4.5. Scenario 2 is a modified national water footprint using only the population within 

the Senqu basin. 
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Figure 36: Water Scarcity Scenario 2 mid-century (2020-2060) Representative Concentration 

Pathway 8.5. Scenario 2 is a modified national water footprint using only the population within 

the Senqu basin. 

 

Figure 37: Water Scarcity Scenario 2 late-century (2061-2100) Representative Concentration 

Pathway 8.5. Scenario 2 is a modified national water footprint using only the population within 

the Senqu basin. 
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The RCP 4.5 Scenario 3 (including population growth) mid-century results give multiple 

years of moderate water scarcity and a few years of significant water scarcity.  The MIROC 

RCM produced the largest values of water scarcity of 151% in 2044 and 2055 and a value of 

154% in 2059. The time series graphs for Scenario 3 are presented in Figures 38-41. 

 

Figure 38: Water Scarcity Scenario 3 mid-century (2020-2060) Representative Concentration 

Pathway 4.5. Scenario 3 is a modified national water footprint that increases with projected 

population within Lesotho. 
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Figure 39: Water Scarcity Scenario 3 late-century (2061-2100) Representative Concentration 

Pathway 4.5. Scenario 3 is a modified national water footprint that increases with projected 

population within Lesotho. 

 

Figure 40: Water Scarcity Scenario 3 mid-century (2020-2060) Representative Concentration 

Pathway 8.5. Scenario 3 is a modified national water footprint that increases with projected 

population within Lesotho. 
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Figure 41: Water Scarcity Scenario 3 mid-century (2020-2060) Representative Concentration 

Pathway 8.5. Scenario 3 is a modified national water footprint that increases with projected 

population within Lesotho. 

The RCP 4.5 Scenario 3 late-century results have multiple years of moderate and 

significant water scarcity.  The Ensemble RCM produced 12 years of moderate water scarcity 

and 1 year of significant water scarcity.  The ICHEC, MIROC, and Ensemble each produced a 

year of significant water scarcity in the year 2066 with values of 186%, 167%, and 162% 

respectively.  The MIROC RCM produced the other reported year of significant water scarcity of 

152% in 2089. 

The RCP 8.5 Scenario 3 mid-century results have multiple years of moderate water 

scarcity and significant water scarcity.  The Ensemble RCM produced 5 years of moderate water 

scarcity in the years 2030, and 2057-2060.  The CCCma RCM produced the year of significant 

water scarcity in the year 2030 with a percentage of 155%. The MIRCO RCM produced 6 years 

of moderate water scarcity which was the most of any of the RCMs.  The RCP 8.5 Scenario 3 

mid-century results have multiple years of moderate water scarcity and significant water scarcity 

and two years of severe water scarcity.  The MIROC and ICHEC RCMs produce the severe 

water scarcity results of 209% in 2088 and 206% in 2093.   
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The MIROC RCM produced the most years of water scarcity with 11 years of moderate 

water scarcity, 4 years of significant water scarcity, and 1 year of severe water scarcity.   

 

Figure 42: A comparison of the frequency of water scarcity events between each Regional 

Climate Model for scenario 3 from 2020-2100. Scenario 3 is a modified national water footprint 

that increases with projected population within Lesotho. Representation Concentration Pathway 

4.5 and 8.5 are both given for comparison. 

Figure 42 is a comparison of the frequency of water scarcity events within scenario 3 

between each RCM.  The ICHEC and MIROC RCMs had a greater number of years with 

moderate water scarcity in RCP 4.5 than RCP 8.5.  The ICHEC and MIROC RCMs each 

produced a year of severe water scarcity in RCP 8.5.  The MIRCO RCM produced more water 

scarcity events greater than 100% (low water scarcity), than any other RCM. 
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Figure 43: Comparison between each scenario of the frequency a Regional Climate Model 

(RCM) produced a water scarcity value greater than 100% with respect to the other RCMs. 

Scenario 1 assumes the Senqu river basin is the sole source of blue water available, and the entire 

national blue water footprint is used in the calculation of water scarcity. Scenario 2 is a modified 

national water footprint using only the population within the Senqu basin. Scenario 3 is a 

modified national water footprint that increases with projected population within Lesotho. 

Representation Concentration Pathway 4.5 and 8.5 are both given for comparison. 

Figure 43 represents a comparison between each scenario of the number of times an 

RCM produced a water scarcity value greater than 100% with respect to the other RCMs.  In 

scenario 1 RCP 4.5, no RCM produced a water scarcity value greater than 100%.  In scenario 1 

RCP 8.5 the MICROC and CCCma RCMs both produced the same amount of water scarcity 

values greater than 100%.  Scenario 2 had no water scarcity events for both RCPs.  Within 

scenario 3 RCP 4.5 the MIROC RCM had the greatest number of water scarcity events, followed 

by the ICHEC, Ensemble, then CCCma RCMs.  Within scenario 3 RCP 8.5 the MIROC RCM 

also produced more water scarcity events than the other RCMs, followed by the Ensemble, 

CCCma, then ICHEC RCMs.    
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4.2 Discussion 

The major findings of this research show that Lesotho is not likely to suffer from Blue 

Water Scarcity in the future within the Senqu river basin in scenario 1 and scenario 2. However, 

Lesotho is likely to suffer from moderate, significant and even severe cases of water scarcity 

under Scenario 3, which incorporates expected rates of population growth.  As expected, the 

most severe cases of waters scarcity occurred in RCP 8.5 for all the scenarios.  It makes sense 

that RCP 8.5 showed higher percentages of water scarcity than RCP 4.5, as it is representative of 

a more extreme climate induced radiative forcing. The MIROC RCM produced the most water 

scarcity events across all the scenarios.  Adjusting the national water footprint to estimate future 

demand in response to population growth in scenario 3 resulted in many more cases of future 

water scarcity.  Since the MIROC RCM produced the most water scarcity events and scenario 3 

produced the most severe cases of water scarcity, the MIROC RCM within scenario 3 can be 

considered as a worst-case scenario for this study.  In RCP 4.5 MIROC produced 56 years of low 

water scarcity, 21 years of moderate water scarcity, and 6 years of significant water scarcity from 

2020-2100.  In RCP 8.5 MIROC produced 59 years of low water scarcity, 17 years of moderate 

water scarcity, 4 years of significant water scarcity and 1 year of severe water scarcity from 

2020-2100.  Any year of water scarcity worse than ‘low water scarcity’ will not only have 

adverse effects on the Basotho, but also on the ecological system within the Senqu river.  In 

order to meet water needs, Basotho will have to withdraw more water than is necessary to 

maintain the ecology of the Senqu river.  This can have cascading effects on the economy and 

nutrition of Basotho who use the river as a source of food and livelihood.  Droughts have 

stricken Lesotho in the past, 1968, 1983, 1990, 2002, 2007, 2011 leaving many Basotho without 

reliable access to blue water (Masih et al., 2014).   
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One reason droughts are hard on Basotho, and why future water scarcity is dangerous is 

the lack of integrated water resource infrastructure within Lesotho.  Currently there are not 

interconnections between the water sources used to support the LHWP and the domestic and 

industrial demands of the Basotho in the lowlands (The World Bank, 2016).  While one part of 

the country may have water, it is unable to effectively supply it to needed areas.  

An important note to consider when evaluating the results of this study is the uncertainty 

attributed to future projections of the GCMs.  Each of the RCMs in this study produced varying 

results and depending on the RCM one chooses to look at, they may find different levels of water 

scarcity.  For example, in scenario 3 in RCP 8.5 the ICHEC RCM yields a water scarcity rating 

of 45% while the CCCma RCM yields 191% in the year 2063.  That is the difference between 

low water scarcity and significant water scarcity respectively.  When the RCMs evaluated past 

water scarcity in Lesotho, they failed to capture historical extreme weather events which resulted 

in droughts.  RCMs have difficulty capturing and replicating historical extreme weather events 

(Panaou et al., 2018).  A study by Shrestha et al. (2016) demonstrates the uncertainty of the 

choice of GCM on predicted future streamflow projections produced by SWAT (Shrestha et al., 

2016).  This increases uncertainty in their ability to capture future extreme weather events.  

This study found an overall decrease of streamflow in Lesotho for each RCP, which 

disagrees with the results of a study performed by Farmarzi et al. in which the impacts of climate 

change on freshwater availability for the entirety of Africa were evaluated with SWAT 

(Faramarzi et al., 2013).  The study by Farmarzi et al. found that the blue water available in 

Lesotho will increase in the future.   
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The two studies differ in that 1) Farmarzi et al. evaluates the blue water available for the 

entirety of Lesotho, 2) blue water available is calculated using the water yield plus the deep 

aquifer recharge for each SWAT sub-basin as opposed to the available streamflow, 3) CMIP3 

scenarios were used as opposed to CMIP5 RCP scenarios.   

The results of decreasing streamflow in the Senqu river basin agrees with previous 

SWAT studies that evaluate the effect of climate change on mountainous streamflow.  The 

mountainous regions which show an overall decrease to mean streamflow include India 

(Reshmidevi et al., 2017), the western United States (Burke William and Ficklin Darren, 2017), 

Portugal (Carvalho-Santos et al., 2017), and the south western Balkans (Papadaki et al., 2016).  

Study sites which saw an increase in streamflow are Canada (Shrestha et al., 2017), and Nepal 

(Omani et al., 2016).  Other studies reported both increases and decreases throughout the year as 

between spring and winter months (Bharati et al., 2016, Ficklin et al., 2016, Xu et al., 2016).  It 

is evident that an increase or decrease in overall streamflow will vary depending on location of 

the study area and the climate of the region.  For example, mountainous watersheds that are 

heavily influenced by glacier melt in studies were shown as having an increase in streamflow as 

temperatures rose (Ficklin et al., 2016, Omani et al., 2016, Schwank et al., 2014, Shrestha et al., 

2017).  In regions not influenced by glacier runoff, temperature rise can have the opposite effect.  

In areas such as Lesotho not influenced by glacier runoff, an increase in mean temperature is a 

major factor in increasing evapotranspiration and as a result decreases streamflow (Salmoral et 

al., 2015).        

This study is important as while SWAT output has been used with the blue water 

footprint to measure existing blue water scarcity, it has not been used to measure future blue 

water scarcity using CMIP5 RCPs and the water footprint.   It is also important because it uses 
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the methodology to evaluate the potential blue water scarcity of Lesotho, which is a region that 

has not been largely studied in this regard.  The Senqu river is a major source of water for the 

people of Lesotho and knowing how climate change will impact the blue water availability can 

help with water resource management decisions. 

This study has limitations which should be considered when evaluating the results.  

Scenario 3 adjusted the water footprint for projected population growth but did not adjust for 

Lesotho’s potential industrialization.  Scenario 3 also evaluated the water scarcity across the 

entirety of Lesotho with respect to population growth, without considering water sources outside 

of the Senqu river basin.  The land use within Lesotho will also change in the future which was 

not considered.  While there are currently two dams, Katse and Mohale, along the Senqu River, 

three more are scheduled to be built and one of those three, the Polihali dam is currently being 

designed in Mokhotlong (Burger, 2018).  The goal of these dams is to transfer water to South 

Africa.  Once completed a total of 70 cms (2208 million m3y-1) will be transferred.  Currently the 

Katse and Mohale transfer a total of 30 cms (950 million m3y-1) (LHWP, 2008).  This water 

transfer was not captured in this model.  This model only evaluated the water available at the 

SG3 outlet streamflow gauge station which had an average flow of 30000 million m3 y-1.  The 

current water transfer of 30 cms does not have a noticeable impact at SG3.  This is shown by the 

results of the Indicators of Hydrologic Alteration.  However, these future dams are likely to have 

a significant impact on the water available in the Senqu river.  The Indicators of Hydrologic 

Alteration results showed the Senqu river was significantly impacted at the SG5 and SG17 gauge 

stations directly downstream of the Katse and Mohale dam respectively.  Basotho who live near 

these streamflow gauging stations are more likely to have less water available to them as 

opposed to living further downstream.   
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With proper SWAT input data of the Katse and Mohale dams, the water available at these 

upstream locations can be modeled in the future along with the water transferred out of Lesotho, 

and a better picture of the water available throughout the river basin can be elucidated as 

opposed to just the basin outlet.   
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

 

This research expanded the framework developed by Rodrigues et al. (2014) by 

incorporating climate change impacts to measure future potential blue water scarcity of a river 

basin.  Climate change affects hydrological cycles and streamflow of rivers and has the potential 

to affect the amount of water available for use within a country.  Thus, the ability to evaluate the 

potential blue water scarcity caused by climate change is important to help adequately plan for 

future water resource management.  The addition of measuring blue water scarcity with respect 

to climate change is an important step in this direction.  The framework developed in this thesis 

was applied to the Senqu river basin within Lesotho under three different scenarios.  The results 

showed an overall decrease in available streamflow of the Senqu river.  Scenario 1 and Scenario 

2 used the national water footprint to measure water scarcity of Lesotho and within the basin 

respectively and did not indicate future water scarcity.  Scenario 3 adjusted the future national 

water footprint to account for projected population demand, indicating several years between 

2020 and 2100 that would experience some form of water scarcity.  The MIROC RCM produced 

the most cases of water scarcity within scenario 3.  Within RCP 4.5 it produced 56 years of low 

water scarcity, 21 years of moderate water scarcity, and 6 years of significant water scarcity from 

2020-2100.  In RCP 8.5 MIROC produced 59 years of low water scarcity, 17 years of moderate 

water scarcity, 4 years of significant water scarcity and 1 year of severe water scarcity from 

2020-2100.  The most extreme water scarcity event produced by the MIROC RCM occurred in 

2088 with a severe water scarcity score of 209%.  
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It is important to remember the limitations within this study and therefore its results 

should only be used carefully to inform future policy and water resource decisions.  Future work 

could improve on the methodology developed in this research to better understand water scarcity 

within Lesotho.  The overall model prediction could be improved by incorporating SWAT input 

data on the dams to investigate the impacts of the dams on water scarcity.  This would allow the 

change in streamflow and water scarcity throughout the basin to be measured providing more 

insight into potential areas that would experience greater water scarcity than others.  The LHWP 

plans on constructing a total of five dams on the Senqu River.  Incorporating the water transfer of 

the dams to South Africa will elucidate the loss of available water within the Senqu River basin.  

The current water transfer of 30 cms does not significantly impact the water available at SG3, 

however it does impact the water available at SG5 and SG17 as shown by the results of the 

Indicators of Hydrologic Alteration analysis.  The ability to model the impact of climate change 

on water availability throughout the river basin will be important for water resource allocation of 

those who depend on the Senqu River for livelihood.  Currently Lesotho lacks infrastructure to 

transfer water sources throughout villages in the river basin (The World Bank, 2016).  Evaluating 

blue water scarcity on a monthly scale as was done by Hoekstra et al. (2012) rather than an 

annual scale will also elucidate on the potential for greater water scarcity concern during the dry 

and wet seasons.   
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